
Assembly Language

Lecture 3 – Assembly Fundamentals

Ahmed Sallam
Slides based on original lecture slides by Dr. Mahmoud Elgayyar

Assembly Language 2

 General Concepts

 CPU Design, Instruction execution cycle

 IA-32 Processor Architecture

 Modes of operations, CPU Registers & Flags, Intel CPU History

 IA-32 Memory Management

 Real address mode, segmented memory, paging

 Input-Output System

 Levels of input / output system

Outcomes of Lecture 2

Assembly Language 3

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 4

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 5

 The following diagram describes the steps from creating a source
program through executing the compiled program.

 If the source code is modified, Steps 2 through 4 must be repeated.

Assemble-Link Execute Cycle

Source
File

Object
File

Listing
File

Link
Library

Executable
File

Map
File

Output

Step 1: text editor

Step 2:
assembler

Step 3:
linker

Step 4:
OS loader

Assembly Language 6

 Use it to see how your program is compiled

 Named after the project, e.g., project.lst

 Suitable for printing

 Contains:

 source code

 addresses

 object code (machine language)

 segment names

 symbols (variables, procedures, and constants)

 Example on pages 72-74 with detailed explanation – PLEASE READ!

Listing File

Assembly Language 7

 What types of files are produced by the assembler?

 (True/False): The linker extracts assembled procedures from the link library

and inserts them in the executable program.

 Which operating system component reads and executes programs?

Review Questions

Assembly Language 8

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 9

 Integer constants and expressions

 Character and string constants

 Reserved words and identifiers

 Directives and instructions

 Labels

 Mnemonics and Operands

 Comments

Basic Elements

Assembly Language 10

[{+|-} digits [radix]
 Optional leading + or – sign
 Binary, decimal, hexadecimal
 Common radix characters:
 h – hexadecimal Use as much as possible
 d – decimal When hex makes no sense
 b – binary For bitwise clarity
 r – encoded real Real

 Examples: 30d, 6Ah, 42, 1101b
 Hexadecimal can't begin with a letter: 0A5h

Integer Constants

Assembly Language 11

 Evaluated at assembly time

 Examples:

Integer Expressions

Assembly Language 12

 Enclose character in single or double quotes
 'A', "x"
 ASCII character = 1 byte

 Enclose strings in single or double quotes
 "ABC"
 'xyz'
 Each character occupies a single byte

 Embedded quotes are allowed:
 'Say "Goodnight," Gracie'
 "This isn't a test"

Characters and Strings

Assembly Language 13

 Reserved words cannot be used as identifiers
 Instruction mnemonics, directives, type attributes, operators,

predefined symbols
 See MASM reference in Appendix A

 Identifiers
 1-247 characters, including digits
 not case sensitive
 first character must be a letter, _, @, ?, or $
 used for labels (procedure names, variables), constants

Reserved Words and Identifiers

Assembly Language 14

 Instructions on how to assemble (not @ runtime)

 Commands that are recognized and acted upon by the

assembler

 not part of the Intel instruction set

 used to declare code, data areas, select memory model, declare

procedures, variables etc.

 not case sensitive (.data, .DATA, and .Data)

 Different assemblers have different directives

 GNU assembler, netwide assembler not the same as MASM

Directives

Assembly Language 15

 One important function of assembler directives is to

define program sections, or segments

 .data

 .code

 .stack 100h

Directives: Defining Segments

Assembly Language 16

 Assembled into machine code by assembler
 Executed at runtime by the CPU
 An instruction contains:
 Label (optional)
 Mnemonic (required)
 Operand(s) (depends on the instruction)
 Comment (optional) – begins with ';'

[label:] mnemonic [operands] [;comment]

loop1: mov eax,32 ;count of array elements

Intel Instructions

Assembly Language 17

 Act as place markers

 marks the address (offset) of code and data

 Follow identifier rules

 Data label (Variable names)

 must be unique

 example: count DWORD 100 (not followed by colon)

 Code label

 target of jump and loop instructions

 example: L1: (followed by colon)

Labels

Assembly Language 18

 No operands

 stc ; set Carry flag

 One operand

 inc eax ; register

 inc myByte ; memory

 Two operands

 add ebx,ecx ; register, register

 sub myByte,25 ; memory, constant

 add eax,36 * 25 ; reg, const-expr

Instruction Formats

Assembly Language 19

 No Operation

 The safest and most useless instruction

 Uses 1 byte of storage

 CPU: Reads it, Decodes it, Ignores it

 Usually used to align code to even-address boundaries
(multiple of 4):

00000000 66 8B C3 mov ax,bx

00000003 90 nop ; align next instruction

00000004 8B D1 mov edx,ecx

 x86 processors are designed to load code and data more
quickly from even doubleword addresses.

NOP Instruction

Assembly Language 20

 (Yes/No): Is A5h a valid hexadecimal constant?

 (Yes/No): Must string constants be enclosed in single quotes?

 What is the maximum length of an identifier?

 (True/False): Assembler directives execute at runtime.

Review Questions

Assembly Language 21

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 22

Program Template
TITLE Program Template (Template.asm)

.data

; (insert variables here)
.code
main PROC
 ; (insert executable instructions here)
 exit
main ENDP
 ; (insert additional procedures here)
END main

Assembly Language 23

Example: Adding and Subtracting Integers
TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc

.code

main PROC
 mov eax,10000h ; EAX = 10000h
 add eax,40000h ; EAX = 50000h
 sub eax,20000h ; EAX = 30000h
 call DumpRegs ; display registers
 exit
main ENDP

END main

Assembly Language 24

Example Output

 Program output, showing registers and flags:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Assembly Language 25

 Capitalization
 Capitalize reserved words, including mnemonics and register names

 Capitalize nothing

 Capitalize initial letters

 Use descriptive identifier names

 Indentation and spacing
 code and data labels – no indentation

 executable instructions – indent 4-5 spaces (1 tab)

 comments: right side of page, aligned vertically

 1-3 spaces between instruction and its operands (1 tab)

 1-2 blank lines between procedures

Possible Coding Standards

Assembly Language 26

Example: Adding and Subtracting Integers
2nd version

TITLE Add and Subtract (AddSub2.asm)

; This program adds and subtracts 32-bit integers.
; Without include
.386
.model flat, stdcall
.stack 4096
ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO

.code

main PROC
 mov eax,10000h ; EAX = 10000h
 add eax,40000h ; EAX = 50000h
 sub eax,20000h ; EAX = 30000h
 call DumpRegs ; display registers
 INVOKE ExitProcess, 0
main ENDP

END main

Assembly Language 27

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 28

 BYTE, SBYTE: 8-bit unsigned & signed integers

 WORD, SWORD: 16-bit unsigned & signed integers

 DWORD, SDWORD: 32-bit unsigned & signed integers

 QWORD: 64-bit integer

 Note: Not signed/unsigned

 TBYTE: 80-bit (ten byte) integer

 REAL4, REAL8: 4-byte short & 8-byte long reals

 REAL10: 10-byte IEEE extended real

Basic Data Types

Assembly Language 29

Legacy Data Directives

Directive Usage

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real

DQ 64-bit integer or real

DT 80-bit (10 bytes) integer

supported also by the Netwide Assembler (NASM)
and Turbo Assembler (TASM)

Assembly Language 30

 A data definition statement sets aside storage in memory for a variable.

 May optionally assign a name (label) to the data

 Syntax:

[name] directive initializer [,initializer] . . .

 value1 BYTE 10

 Use the ? Symbol for undefined variables

 All initializers become binary data in memory

 00110010b, 32h, and 50d all end up being having the same binary value

Data Definition Statement

Assembly Language 31

Defining BYTE, SBYTE Data

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

 Each of the following defines a single byte of storage:

 The optional name is a label marking the variable’s offset from the beginning

of its enclosing segment.

 if value1 is located at offset 0000 in the data segment and consumes 1 byte of

storage, value2 is automatically located at offset 0001

 MASM allow you from initializing a BYTE with a negative value (poor style)

 If you declare a SBYTE variable, the Microsoft debugger will automatically

display its value in decimal with a leading sign.

Assembly Language 32

Defining Byte Arrays

list1 BYTE 10,20,30,40

list2 BYTE 10,20,30,40

 BYTE 50,60,70,80

 BYTE 81,82,83,84

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,‘A’,22h

 Examples that use multiple initializers:

 An array is simply a set of sequential memory locations

 The directive (BYTE) indicates the offset needed to get to

the next array element

 No length, no termination flag, no special properties

Assembly Language 33

 A string is implemented as a sequence of characters

 For convenience, it is usually enclosed in quotation marks

 It is usually null terminated

 Characters are bytes

 Hex characters 0Dh (CR) and 0Ah (LF) are useful

 Examples:

Defining Strings

str1 BYTE "Enter your name: ",0
str2 BYTE 'ERROR!',0Dh,0Ah,'Halting program‘,0Dh,0Ah,0
str3 BYTE 'A','E','I','O','U'
newLine BYTE 0Dh,0Ah,0
greet BYTE "A string in"
 BYTE " two parts.",0
menu BYTE "1. Create a new account",0dh,0ah,
 "2. Open an existing account",0dh,0ah,
 "3. Exit",0ah,0ah,
 "Choice> ",0

Assembly Language 34

 Use DUP to allocate space for data

 Syntax: repetitions DUP (argument)

 repetitions and argument must be constants or constant
expressions

DUP Operator

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero

var2 BYTE 20 DUP(?) ; 20 bytes, uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

var4 BYTE 10,3 DUP(0),20 ; 5 bytes

Assembly Language 35

Defining Other Types

val1 WORD 65535 ; largest unsigned value

val2 SWORD –32768 ; smallest signed value

word3 WORD ? ; uninitialized, unsigned

word4 DWORD "ABCD" ; four characters

myList WORD 1,2,3,4,5 ; array of words

array WORD 5 DUP(?) ; uninitialized array

val5 DWORD 0FFFF0000h ; unsigned

val6 SDWORD –2147483648 ; signed

dwd7 SDWORD –2,–1,0,1,2 ; signed array

qwd8 QWORD 1234567812345678h

rVal1 REAL4 -2.1

rVal2 REAL8 3.2E-260

Assembly Language 36

 All data types larger than a byte store their individual bytes in

reverse order. The least significant byte occurs at the first

(lowest) memory address.

 Example:
 val1 DWORD 12345678h

Little Endian Order

Assembly Language 37

Example: Using Variables
TITLE Add and Subtract, Version 3 (AddSub3.asm)
; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.
INCLUDE Irvine32.inc

.data

val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?

.code

main PROC
 mov eax,val1 ; start with 10000h

add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP
END main

Assembly Language 38

 .code

 all that follows goes in the code segment

 .data

 all that follows goes in the data segment

 .data?

 uninitialized data segment

 allocated at runtime to store data

 no space needed in stored .exe (since no values to store)

 If intermixed they are separated by the assembler

Segment Control

Assembly Language 39

 Use the .data? directive to declare an uninitialized data segment

 .DATA? directive reduces the size of a compiled program.

Declaring Uninitialized Data

 array2, even though empty, has 20KB saved in .exe to store its

non-existent values

.data?

array1 DWORD 5000 DUP (?)

.data

array2 DWORD 5000 DUP (?)

 No space is allocated to array1 until the program is loaded for

execution (.exe is 20KB smaller)

Assembly Language 40

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 41

name = expression

 expression is a 32-bit integer (expression or constant)

 may be redefined (but not good form to do so!)

 name is called a symbolic constant

 Directives: No runtime impact, not part of .exe

 good programming style to use symbols

Integer Symbolic Constants

COUNT = 500

…

mov ax,COUNT

Assembly Language 42

 Current location counter: $

 subtract address of list

 difference is the number of bytes

 Example:

 Divide by element size if bigger than a byte (i.e., 2 for

WORD, 4 for DWORD, 8 for QWORD)

 Example:

Array Size

list BYTE 10,20,30,40
listSize = ($ - list)

list DWORD 1,2,3,4
listSize = ($ - list) / 4

Assembly Language 43

 Define a symbol as either an integer or text expression

 = directive only permitted integers

 Cannot be redefined

 Example:

EQU Directive

PI EQU <3.1416>

pressKey EQU <"Press any key to continue...",0>

.data

prompt BYTE pressKey

Assembly Language 44

 Define a textual symbol as either an integer or text expression

 Called a text macro

 Can be redefined

 % turns an integer into text

TEXTEQU Directive

;macros

msg TEXTEQU <"Do you wish to continue (Y/N)?">

rowSize = 5

count TEXTEQU %(rowSize * 2) ; eval & store as text

setupAL TEXTEQU <mov al,count> ; macro for a mov instr

.data

prompt1 BYTE msg

.code

setupAL ; creates "mov al,10"

Assembly Language 45

 Make your computer look, act, and feel like one built in the 80s

 Generate 16-bit MS-DOS Programs (Why?)

 "Advantages"

 enables calling of MS-DOS and BIOS functions

 no memory access restrictions

 Disadvantages

 must be aware of both segments and offsets

 cannot call Win32 functions

Requirements

 INCLUDE Irvine16.inc

 Initialize DS to the data segment:

mov ax,@data

mov ds,ax

Real-Address Programming

Assembly Language 46

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 47

 Integer expression, character constant
 directive – interpreted by the assembler
 instruction – executes at runtime
 code, data, and stack segments
 source, listing, object, map, executable files
 Data definition directives:

 BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD, REAL4, REAL8
 TBYTE, REAL10 – Obscure and rarely used instructions (becoming

obsolete)

 DUP operator, location counter ($)
 Symbolic constants

 =, EQU and TEXTEQU

Summary

	Assembly Language��Lecture 3 – Assembly Fundamentals �
	Outcomes of Lecture 2
	Outline
	Outline
	Assemble-Link Execute Cycle
	Listing File
	Review Questions
	Outline
	Basic Elements
	Integer Constants
	Integer Expressions
	Characters and Strings
	Reserved Words and Identifiers
	Directives
	Directives: Defining Segments
	Intel Instructions
	Labels
	Instruction Formats
	NOP Instruction
	Review Questions
	Outline
	Program Template
	Example: Adding and Subtracting Integers
	Example Output
	Possible Coding Standards
	Example: Adding and Subtracting Integers�2nd version
	Outline
	Basic Data Types
	Legacy Data Directives
	Data Definition Statement
	Defining BYTE, SBYTE Data
	Defining Byte Arrays
	Defining Strings
	DUP Operator
	Defining Other Types
	Little Endian Order
	Example: Using Variables
	Segment Control
	Declaring Uninitialized Data
	Outline
	Integer Symbolic Constants
	Array Size
	EQU Directive
	TEXTEQU Directive
	Real-Address Programming
	Outline
	Summary

