
Assembly Language

Lecture 3 – Assembly Fundamentals

Ahmed Sallam
Slides based on original lecture slides by Dr. Mahmoud Elgayyar

Assembly Language 2

 General Concepts

 CPU Design, Instruction execution cycle

 IA-32 Processor Architecture

 Modes of operations, CPU Registers & Flags, Intel CPU History

 IA-32 Memory Management

 Real address mode, segmented memory, paging

 Input-Output System

 Levels of input / output system

Outcomes of Lecture 2

Assembly Language 3

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 4

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 5

 The following diagram describes the steps from creating a source
program through executing the compiled program.

 If the source code is modified, Steps 2 through 4 must be repeated.

Assemble-Link Execute Cycle

Source
File

Object
File

Listing
File

Link
Library

Executable
File

Map
File

Output

Step 1: text editor

Step 2:
assembler

Step 3:
linker

Step 4:
OS loader

Assembly Language 6

 Use it to see how your program is compiled

 Named after the project, e.g., project.lst

 Suitable for printing

 Contains:

 source code

 addresses

 object code (machine language)

 segment names

 symbols (variables, procedures, and constants)

 Example on pages 72-74 with detailed explanation – PLEASE READ!

Listing File

Assembly Language 7

 What types of files are produced by the assembler?

 (True/False): The linker extracts assembled procedures from the link library

and inserts them in the executable program.

 Which operating system component reads and executes programs?

Review Questions

Assembly Language 8

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 9

 Integer constants and expressions

 Character and string constants

 Reserved words and identifiers

 Directives and instructions

 Labels

 Mnemonics and Operands

 Comments

Basic Elements

Assembly Language 10

[{+|-} digits [radix]
 Optional leading + or – sign
 Binary, decimal, hexadecimal
 Common radix characters:
 h – hexadecimal Use as much as possible
 d – decimal When hex makes no sense
 b – binary For bitwise clarity
 r – encoded real Real

 Examples: 30d, 6Ah, 42, 1101b
 Hexadecimal can't begin with a letter: 0A5h

Integer Constants

Assembly Language 11

 Evaluated at assembly time

 Examples:

Integer Expressions

Assembly Language 12

 Enclose character in single or double quotes
 'A', "x"
 ASCII character = 1 byte

 Enclose strings in single or double quotes
 "ABC"
 'xyz'
 Each character occupies a single byte

 Embedded quotes are allowed:
 'Say "Goodnight," Gracie'
 "This isn't a test"

Characters and Strings

Assembly Language 13

 Reserved words cannot be used as identifiers
 Instruction mnemonics, directives, type attributes, operators,

predefined symbols
 See MASM reference in Appendix A

 Identifiers
 1-247 characters, including digits
 not case sensitive
 first character must be a letter, _, @, ?, or $
 used for labels (procedure names, variables), constants

Reserved Words and Identifiers

Assembly Language 14

 Instructions on how to assemble (not @ runtime)

 Commands that are recognized and acted upon by the

assembler

 not part of the Intel instruction set

 used to declare code, data areas, select memory model, declare

procedures, variables etc.

 not case sensitive (.data, .DATA, and .Data)

 Different assemblers have different directives

 GNU assembler, netwide assembler not the same as MASM

Directives

Assembly Language 15

 One important function of assembler directives is to

define program sections, or segments

 .data

 .code

 .stack 100h

Directives: Defining Segments

Assembly Language 16

 Assembled into machine code by assembler
 Executed at runtime by the CPU
 An instruction contains:
 Label (optional)
 Mnemonic (required)
 Operand(s) (depends on the instruction)
 Comment (optional) – begins with ';'

[label:] mnemonic [operands] [;comment]

loop1: mov eax,32 ;count of array elements

Intel Instructions

Assembly Language 17

 Act as place markers

 marks the address (offset) of code and data

 Follow identifier rules

 Data label (Variable names)

 must be unique

 example: count DWORD 100 (not followed by colon)

 Code label

 target of jump and loop instructions

 example: L1: (followed by colon)

Labels

Assembly Language 18

 No operands

 stc ; set Carry flag

 One operand

 inc eax ; register

 inc myByte ; memory

 Two operands

 add ebx,ecx ; register, register

 sub myByte,25 ; memory, constant

 add eax,36 * 25 ; reg, const-expr

Instruction Formats

Assembly Language 19

 No Operation

 The safest and most useless instruction

 Uses 1 byte of storage

 CPU: Reads it, Decodes it, Ignores it

 Usually used to align code to even-address boundaries
(multiple of 4):

00000000 66 8B C3 mov ax,bx

00000003 90 nop ; align next instruction

00000004 8B D1 mov edx,ecx

 x86 processors are designed to load code and data more
quickly from even doubleword addresses.

NOP Instruction

Assembly Language 20

 (Yes/No): Is A5h a valid hexadecimal constant?

 (Yes/No): Must string constants be enclosed in single quotes?

 What is the maximum length of an identifier?

 (True/False): Assembler directives execute at runtime.

Review Questions

Assembly Language 21

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 22

Program Template
TITLE Program Template (Template.asm)

.data

; (insert variables here)
.code
main PROC
 ; (insert executable instructions here)
 exit
main ENDP
 ; (insert additional procedures here)
END main

Assembly Language 23

Example: Adding and Subtracting Integers
TITLE Add and Subtract (AddSub.asm)

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.inc

.code

main PROC
 mov eax,10000h ; EAX = 10000h
 add eax,40000h ; EAX = 50000h
 sub eax,20000h ; EAX = 30000h
 call DumpRegs ; display registers
 exit
main ENDP

END main

Assembly Language 24

Example Output

 Program output, showing registers and flags:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Assembly Language 25

 Capitalization
 Capitalize reserved words, including mnemonics and register names

 Capitalize nothing

 Capitalize initial letters

 Use descriptive identifier names

 Indentation and spacing
 code and data labels – no indentation

 executable instructions – indent 4-5 spaces (1 tab)

 comments: right side of page, aligned vertically

 1-3 spaces between instruction and its operands (1 tab)

 1-2 blank lines between procedures

Possible Coding Standards

Assembly Language 26

Example: Adding and Subtracting Integers
2nd version

TITLE Add and Subtract (AddSub2.asm)

; This program adds and subtracts 32-bit integers.
; Without include
.386
.model flat, stdcall
.stack 4096
ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO

.code

main PROC
 mov eax,10000h ; EAX = 10000h
 add eax,40000h ; EAX = 50000h
 sub eax,20000h ; EAX = 30000h
 call DumpRegs ; display registers
 INVOKE ExitProcess, 0
main ENDP

END main

Assembly Language 27

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 28

 BYTE, SBYTE: 8-bit unsigned & signed integers

 WORD, SWORD: 16-bit unsigned & signed integers

 DWORD, SDWORD: 32-bit unsigned & signed integers

 QWORD: 64-bit integer

 Note: Not signed/unsigned

 TBYTE: 80-bit (ten byte) integer

 REAL4, REAL8: 4-byte short & 8-byte long reals

 REAL10: 10-byte IEEE extended real

Basic Data Types

Assembly Language 29

Legacy Data Directives

Directive Usage

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real

DQ 64-bit integer or real

DT 80-bit (10 bytes) integer

supported also by the Netwide Assembler (NASM)
and Turbo Assembler (TASM)

Assembly Language 30

 A data definition statement sets aside storage in memory for a variable.

 May optionally assign a name (label) to the data

 Syntax:

[name] directive initializer [,initializer] . . .

 value1 BYTE 10

 Use the ? Symbol for undefined variables

 All initializers become binary data in memory

 00110010b, 32h, and 50d all end up being having the same binary value

Data Definition Statement

Assembly Language 31

Defining BYTE, SBYTE Data

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

 Each of the following defines a single byte of storage:

 The optional name is a label marking the variable’s offset from the beginning

of its enclosing segment.

 if value1 is located at offset 0000 in the data segment and consumes 1 byte of

storage, value2 is automatically located at offset 0001

 MASM allow you from initializing a BYTE with a negative value (poor style)

 If you declare a SBYTE variable, the Microsoft debugger will automatically

display its value in decimal with a leading sign.

Assembly Language 32

Defining Byte Arrays

list1 BYTE 10,20,30,40

list2 BYTE 10,20,30,40

 BYTE 50,60,70,80

 BYTE 81,82,83,84

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,‘A’,22h

 Examples that use multiple initializers:

 An array is simply a set of sequential memory locations

 The directive (BYTE) indicates the offset needed to get to

the next array element

 No length, no termination flag, no special properties

Assembly Language 33

 A string is implemented as a sequence of characters

 For convenience, it is usually enclosed in quotation marks

 It is usually null terminated

 Characters are bytes

 Hex characters 0Dh (CR) and 0Ah (LF) are useful

 Examples:

Defining Strings

str1 BYTE "Enter your name: ",0
str2 BYTE 'ERROR!',0Dh,0Ah,'Halting program‘,0Dh,0Ah,0
str3 BYTE 'A','E','I','O','U'
newLine BYTE 0Dh,0Ah,0
greet BYTE "A string in"
 BYTE " two parts.",0
menu BYTE "1. Create a new account",0dh,0ah,
 "2. Open an existing account",0dh,0ah,
 "3. Exit",0ah,0ah,
 "Choice> ",0

Assembly Language 34

 Use DUP to allocate space for data

 Syntax: repetitions DUP (argument)

 repetitions and argument must be constants or constant
expressions

DUP Operator

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero

var2 BYTE 20 DUP(?) ; 20 bytes, uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

var4 BYTE 10,3 DUP(0),20 ; 5 bytes

Assembly Language 35

Defining Other Types

val1 WORD 65535 ; largest unsigned value

val2 SWORD –32768 ; smallest signed value

word3 WORD ? ; uninitialized, unsigned

word4 DWORD "ABCD" ; four characters

myList WORD 1,2,3,4,5 ; array of words

array WORD 5 DUP(?) ; uninitialized array

val5 DWORD 0FFFF0000h ; unsigned

val6 SDWORD –2147483648 ; signed

dwd7 SDWORD –2,–1,0,1,2 ; signed array

qwd8 QWORD 1234567812345678h

rVal1 REAL4 -2.1

rVal2 REAL8 3.2E-260

Assembly Language 36

 All data types larger than a byte store their individual bytes in

reverse order. The least significant byte occurs at the first

(lowest) memory address.

 Example:
 val1 DWORD 12345678h

Little Endian Order

Assembly Language 37

Example: Using Variables
TITLE Add and Subtract, Version 3 (AddSub3.asm)
; This program adds and subtracts 32-bit unsigned
; integers and stores the sum in a variable.
INCLUDE Irvine32.inc

.data

val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalVal DWORD ?

.code

main PROC
 mov eax,val1 ; start with 10000h

add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP
END main

Assembly Language 38

 .code

 all that follows goes in the code segment

 .data

 all that follows goes in the data segment

 .data?

 uninitialized data segment

 allocated at runtime to store data

 no space needed in stored .exe (since no values to store)

 If intermixed they are separated by the assembler

Segment Control

Assembly Language 39

 Use the .data? directive to declare an uninitialized data segment

 .DATA? directive reduces the size of a compiled program.

Declaring Uninitialized Data

 array2, even though empty, has 20KB saved in .exe to store its

non-existent values

.data?

array1 DWORD 5000 DUP (?)

.data

array2 DWORD 5000 DUP (?)

 No space is allocated to array1 until the program is loaded for

execution (.exe is 20KB smaller)

Assembly Language 40

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 41

name = expression

 expression is a 32-bit integer (expression or constant)

 may be redefined (but not good form to do so!)

 name is called a symbolic constant

 Directives: No runtime impact, not part of .exe

 good programming style to use symbols

Integer Symbolic Constants

COUNT = 500

…

mov ax,COUNT

Assembly Language 42

 Current location counter: $

 subtract address of list

 difference is the number of bytes

 Example:

 Divide by element size if bigger than a byte (i.e., 2 for

WORD, 4 for DWORD, 8 for QWORD)

 Example:

Array Size

list BYTE 10,20,30,40
listSize = ($ - list)

list DWORD 1,2,3,4
listSize = ($ - list) / 4

Assembly Language 43

 Define a symbol as either an integer or text expression

 = directive only permitted integers

 Cannot be redefined

 Example:

EQU Directive

PI EQU <3.1416>

pressKey EQU <"Press any key to continue...",0>

.data

prompt BYTE pressKey

Assembly Language 44

 Define a textual symbol as either an integer or text expression

 Called a text macro

 Can be redefined

 % turns an integer into text

TEXTEQU Directive

;macros

msg TEXTEQU <"Do you wish to continue (Y/N)?">

rowSize = 5

count TEXTEQU %(rowSize * 2) ; eval & store as text

setupAL TEXTEQU <mov al,count> ; macro for a mov instr

.data

prompt1 BYTE msg

.code

setupAL ; creates "mov al,10"

Assembly Language 45

 Make your computer look, act, and feel like one built in the 80s

 Generate 16-bit MS-DOS Programs (Why?)

 "Advantages"

 enables calling of MS-DOS and BIOS functions

 no memory access restrictions

 Disadvantages

 must be aware of both segments and offsets

 cannot call Win32 functions

Requirements

 INCLUDE Irvine16.inc

 Initialize DS to the data segment:

mov ax,@data

mov ds,ax

Real-Address Programming

Assembly Language 46

 Assembling, Linking, and Running Programs

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outline

Assembly Language 47

 Integer expression, character constant
 directive – interpreted by the assembler
 instruction – executes at runtime
 code, data, and stack segments
 source, listing, object, map, executable files
 Data definition directives:

 BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD, REAL4, REAL8
 TBYTE, REAL10 – Obscure and rarely used instructions (becoming

obsolete)

 DUP operator, location counter ($)
 Symbolic constants

 =, EQU and TEXTEQU

Summary

	Assembly Language��Lecture 3 – Assembly Fundamentals �
	Outcomes of Lecture 2
	Outline
	Outline
	Assemble-Link Execute Cycle
	Listing File
	Review Questions
	Outline
	Basic Elements
	Integer Constants
	Integer Expressions
	Characters and Strings
	Reserved Words and Identifiers
	Directives
	Directives: Defining Segments
	Intel Instructions
	Labels
	Instruction Formats
	NOP Instruction
	Review Questions
	Outline
	Program Template
	Example: Adding and Subtracting Integers
	Example Output
	Possible Coding Standards
	Example: Adding and Subtracting Integers�2nd version
	Outline
	Basic Data Types
	Legacy Data Directives
	Data Definition Statement
	Defining BYTE, SBYTE Data
	Defining Byte Arrays
	Defining Strings
	DUP Operator
	Defining Other Types
	Little Endian Order
	Example: Using Variables
	Segment Control
	Declaring Uninitialized Data
	Outline
	Integer Symbolic Constants
	Array Size
	EQU Directive
	TEXTEQU Directive
	Real-Address Programming
	Outline
	Summary

