Faculy) of Compuicw & laformatics

Assembly Language

Lecture 3 — Assembly Fundamentals

Ahmed Sallam

Slides based on original lecture slides by Dr. Mahmoud Elgayyar

Outcomes of Lecture 2

e General Concepts

+ CPU Design, Instruction execution cycle

e |A-32 Processor Architecture

+ Modes of operations, CPU Registers & Flags, Intel CPU History

e JA-32 Memory Management
+ Real address mode, segmented memory, paging
e Input-Output System

+ Levels of input / output system

Assembly Language 2

Outline

e Assembling, Linking, and Running Programs

e Basic Elements of Assembly Language
e Example: Adding and Subtracting Integers

e Defining Data

I'm so clever~! &

\

e Symbolic Constants

o Real-Address Mode Programming

Assembly Language 3

Outline

e Assembling, Linking, and Running Programs

e Basic Elements of Assembly Language
e Example: Adding and Subtracting Integers
e Defining Data

I'm so clever~! &

e Symbolic Constants

o Real-Address Mode Programming

Assembly Language 4

Assemble-Link Execute Cycle

e The following diagram describes the steps from creating a source

program through executing the compiled program.

o [f the source code is modified, Steps 2 through 4 must be repeated.

Source

Step 2:
assembler

Link
Library

File

Step 1: text editor

Object
>

File

-

Step 3:
linker

Step 4:

Listing
File

Executable
File

OS loader
—P

Output

Assembly Language

Listing File

Use it to see how your program is compiled
Named after the project, e.qg., project. Ist

Suitable for printing

e Contains:

2

2

2

2

2

o Example on pages 72-74 with detailed explanation — PLEASE READ!

source code

addresses

object code (machine language)
segment names

symbols (variables, procedures, and constants)

Assembly Language

Review Questions

* What types of files are produced by the assembler?

o (True/False): The linker extracts assembled procedures from the link library

and inserts them in the executable program.

» Which operating system component reads and executes programs?

Assembly Language

Outline

* Basic Elements of Assembly Language

o Example: Adding and Subtracting Integers

e Defining Data

I'm so clever~! &

\

e Symbolic Constants

o Real-Address Mode Programming

Assembly Language 8

Basic Elements

e Integer constants and expressions

e Character and string constants
e Reserved words and identifiers
e Directives and instructions

e Labels

e Mnemonics and Operands

e Comments

Assembly Language 9

Integer Constants

[{+[-} digits [radix]
e Optional leading + or — sign

e Binary, decimal, hexadecimal
e Common radix characters:

¢+ h—hexadecimal Use as much as possible

¢ d —decimal When hex makes no sense
¢ b —binary For bitwise clarity

¢ r—encoded real Real

Examples: 30d, 6Ah, 42, 1101b
Hexadecimal can't begin with a letter: 0A5h

Assembly Language 10

Integer Expressions

e FEvaluated at assembly time

e Examples:

Operator Name Precedence Level

) parentheses I

+, - unary plus, minus 2

*,/ multiply, divide 3

MOD modulus 3

+, - add. subtract 4

Expression Value

16 / & 3
-3 + 4) * (6 - 1) -36
-2+ 4 *6 -1 20
25 mod 3 1

Assembly Language

11

Characters and Strings

e Enclose character in single or double quotes
* IAI’ llel
+ ASCIl character = 1 byte

e Enclose strings in single or double quotes
* IIABCH
* leZl
+ Each character occupies a single byte

* Embedded quotes are allowed:

+ 'Say "Goodnight," Gracie'
¢ "This isn't a test"

Assembly Language 12

Reserved Words and Identifiers

e Reserved words cannot be used as identifiers

¢ Instruction mnemonics, directives, type attributes, operators,
predefined symbols

+ See MASM reference in Appendix A

o [dentifiers

¢ 1-247 characters, including digits

¢ not case sensitive

o first character must be a letter, , @, ?, or S

+ used for labels (procedure names, variables), constants

Assembly Language 13

Directives

e Instructions on how to assemble (not @ runtime)

e Commands that are recognized and acted upon by the
assembler
+ not part of the Intel instruction set

+ used to declare code, data areas, select memory model, declare

procedures, variables etc.

+ not case sensitive (.data, .DATA, and .Data)

e Different assemblers have different directives

+ GNU assembler, netwide assembler not the same as MASM

Assembly Language 14

Directives: Defining Segments

e One important function of assembler directives is to

define program sections, or segments
.data
.code

.stack 100h

Assembly Language 15

Intel Instructions

o Assembled into machine code by assembler

e Executed at runtime by the CPU
e An instruction contains:

+ Label (optional)

+ Mnemonic (required)

+ Operand(s) (depends on the instruction)
¢ Comment (optional) — begins with ';’

[1abel =] mnemonic [operands] [,;comment]

Joopl: mov eax, 32 scount of array elements

Assembly Language 16

Labels

o Act as place markers

+ marks the address (offset) of code and data

» Follow identifier rules

e Data label (Variable names)

+ must be unique

¢+ example: count DWORD 100 (not followed by colon)

e Code label

+ target of jump and loop instructions

¢ example: L1: (followed by colon)

Assembly Language 17

Instruction Formats

* No operands

+ stc ; set Carry fTlag

e One operand
« INC eax , register
+ INC myByte ; memory
e Two operands
+ add ebx,ecx , register, register
+ sub myByte,b25 , memory, constant

+ add eax,36 * 25 , reg, const-expr

Assembly Language 18

NOP Instruction

e No Operation

¢ The safest and most useless instruction

o Uses 1 byte of storage
e CPU: Reads it, Decodes it, Ignores it

e Usually used to align code to even-address boundaries
(multiple of 4):

00000000 66 8B C3 mov ax,bx

00000003 90 nop ; align next instruction
00000004 8B D1 mov edx,ecx

e x86 processors are designed to load code and data more

quickly from even doubleword addresses.

Assembly Language 19

Review Questions

(Yes/No): Is A5h a valid hexadecimal constant?

(Yes/No): Must string constants be enclosed in single quotes?

What is the maximum length of an identifier?

(True/False): Assembler directives execute at runtime.

Assembly Language 20

Outline

e Example: Adding and Subtracting Integers

e Defining Data
I'm so clever~ &

e Symbolic Constants

o Real-Address Mode Programming

Assembly Language 21

Program Template

TITLE Program Template (Template.asm)
.data

; (Insert variables here)
.code
main PROC
; (Insert executable i1nstructions here)
exit
main ENDP
; (Insert additional procedures here)
END main

Assembly Language

22

Example: Adding and Subtracting Integers

TITLE Add and Subtract

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.1nc
_code

main PROC
mov eax,10000h
add eax,40000h
sub eax,20000h
call DumpRegs
exit

main ENDP

END main

(AddSub.asm)

; EAX = 10000h
; EAX = 50000h
; EAX = 30000h

; display registers

Assembly Language

23

Example Output

e Program output, showing registers and flags:

EAX=00030000 EBX=7FFDFOOO ECX=00000101 EDX=FFFFFFFF
ES1=00000000 EDI=00000000 EBP=0012FFFO ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Assembly Language 24

Possible Coding Standards

e Capitalization
+ Capitalize reserved words, including mnemonics and register names
+ Capitalize nothing

+ Capitalize initial letters
o Use descriptive identifier names

e Indentation and spacing
+ code and data labels — no indentation
+ executable instructions —indent 4-5 spaces (1 tab)
+ comments: right side of page, aligned vertically
+ 1-3 spaces between instruction and its operands (1 tab)

+ 1-2 blank lines between procedures

Assembly Language 25

Example: Adding and Subtracting Integers

2"d yersion

TITLE Add and Subtract (AddSub2.asm)

; This program adds and subtracts 32-bit integers.
: Without i1nclude

. 386

-.model flat, stdcall

.Stack 4096

ExitProcess PROTO, dwExitCode.:DWORD

DumpRegs PROTO

.code
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ;. EAX = 50000h
sub eax,20000h ;. EAX = 30000h
call DumpRegs ; display registers
INVOKE ExitProcess, 0O
main ENDP

END main

Assembly Language

26

Outline

e Defining Data
I'm so clever~ &

e Symbolic Constants

o Real-Address Mode Programming

Assembly Language 27

Basic Data Types

e BYTE, SBYTE: 8-bit unsigned & signed integers

o WORD, SWORD: 16-bit unsigned & signed integers
e DWORD, SDWORD: 32-bit unsigned & signed integers
e QWORD: 64-bit integer
+ Note: Not signed/unsigned
o TBYTE: 80-bit (ten byte) integer
e REAL4, REALS: 4-byte short & 8-byte long reals
e REAL10: 10-byte IEEE extended real

Assembly Language 28

Legacy Data Directives

I

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real
DQ 64-bit integer or real
DT 80-bit (10 bytes) integer

supported also by the Netwide Assembl/er (NASM)
and 7urbo Assembler (TASM)

Assembly Language 29

Data Definition Statement

* A data definition statement sets aside storage in memory for a variable.
* May optionally assign a name (label) to the data
e Syntax:

[name] directive initializer [,initializer] . . .

\ L

valuel BYTE 10

o Use the ? Symbol for undefined variables

o Allinitializers become binary data in memory

+ 00110010b, 32h, and 50d all end up being having the same binary value

Assembly Language 30

Defining BYTE, SBYTE Data

e FEach of the following defines a single byte of storage:

valuel BYTE "A- ; Character constant
value2 BYTE O ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
value4 SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte
value6 BYTE ? ; uninitialized byte

e The optional name is a label marking the variable’s offset from the beginning

of its enclosing segment.

+ if valuel is located at offset 0000 in the data segment and consumes 1 byte of

storage, value2 is automatically located at offset 0001

e MASM allow you from initializing a BYTE with a negative value (poor style)

e If you declare a SBYTE variable, the Microsoft debugger will automatically

display its value in decimal with a leading sign.

Assembly Language 31

Defining Byte Arrays

e Examples that use multiple initializers:
listl BYTE 10,20,30,40

list2 BYTE 10,20,30,40

BYTE 50,60,70,80

BYTE 81,82,83,84
list3 BYTE ?,32,41h,00100010b
list4 BYTE OAh,20h, “A”,22h

e An array is simply a set of sequential memory locations

e The directive (BYTE) indicates the offset needed to get to

the next array element

e No length, no termination flag, no special properties

Assembly Language 32

Defining Strings

e Astring is implemented as a sequence of characters

+ For convenience, it is usually enclosed in quotation marks

¢ |tis usually null terminated

¢ Characters are bytes

+ Hex characters ODh (CR) and OAh (LF) are useful

e Examples:

strl
str2
str3
newLine
greet

menu

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

"“"Enter your name: ",0

"ERROR!* ,0Dh,0Ah, "Halting program*,0Dh,0Ah,0O
“A"_"E"."1"."0","U"

ODh,0Ah,O

"A string iIn"

" two parts.',0

1. Create a new account',0dh,Oah,

"2. Open an existing account'",0dh,Oah,

3. Exit',0ah,0Oah,

"Choice> ",0

Assembly Language

33

DUP Operator

e Use DUP to allocate space for data

e Syntax: repetitions DUP (argument)

e repetitions and argument must be constants or constant

expressions

varl BYTE 20 DUP(O)
var2 BYTE 20 DUP(?)
var3 BYTE 4 DUP(''STACK™)
var4 BYTE 10,3 DUP(0),20

; 20 bytes, all equal to zero
; 20 bytes, uninitialized

; 20 bytes: "STACKSTACKSTACKSTACK™
. 5 bytes

Assembly Language

34

Defining Other Types

vall WORD
val2 SWORD
word3 WORD

word4 DWORD
myList WORD
array WORD
val5 DWORD
val6 SDWORD
dwd7 SDWORD
qwd8 QWORD
rvall REAL4
rval2 REALS

65535 ; largest unsigned value

—32768 ; smallest signed value

? ; uninitialized, unsigned
""ABCD" ;, Four characters
1,2,3,4,5 ; array of words

5 DUP(?) ; uninitialized array

OFFFFOO000N , unsigned

—2147483648 ; signed

-2,-1,0,1,2 ; signed array
1234567812345678h

-2.1

3.2E-260

Assembly Language

35

Little Endian Order

o All data types larger than a byte store their individual bytes in

reverse order. The least significant byte occurs at the first

(lowest) memory address.

e Example:

vall DWORD 12345678h 0000: 78

0001: 56

0002: 34

0003: 12

Assembly Language 36

Example: Using Variables

TITLE Add and Subtract, Version 3 (AddSub3.asm)
, This program adds and subtracts 32-bit unsigned

; Integers and stores the sum in a variable.

INCLUDE Irvine32.inc

_data

vall DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalval DWORD ?

.code

main PROC
mov eax,vall ; start with 10000h
add eax,val?2 ; add 40000h
sub eax,val3 ; Subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP

END main

Assembly Language 37

Segment Control

e .code

+ all that follows goes in the code segment

e .data

+ all that follows goes in the data segment

e .data?

¢ uninitialized data segment
¢ allocated at runtime to store data

+ no space needed in stored .exe (since no values to store)

o [f intermixed they are separated by the assembler

Assembly Language 38

Declaring Uninitialized Data

o Use the .data? directive to declare an uninitialized data segment

+ .DATA? directive reduces the size of a compiled program.

.data?

arrayl DWORD 5000 DUP (?)

e No space is allocated to arrayl until the program is loaded for

execution (.exe is 20KB smaller)

.data
array2 DWORD 5000 DUP (?)

e array2, even though empty, has 20KB saved in .exe to store its

non-existent values

Assembly Language 39

Outline

I'm so clever~! &

\

» Symbolic Constants

o Real-Address Mode Programming

Assembly Language 40

Integer Symbolic Constants

name = expression

+ expression is a 32-bit integer (expression or constant)

+ may be redefined (but not good form to do so!)

+ name is called a symbolic constant

+ Directives: No runtime impact, not part of .exe

e good programming style to use symbols
COUNT = 500

mov ax,COUNT

Assembly Language 41

Array Size

e Current location counter: S

¢ subtract address of list

+ difference is the number of bytes

. :
Example. list BYTE 10,20,30,40

listSize = ($ - list)
e Divide by element size if bigger than a byte (i.e., 2 for
WORD, 4 for DWORD, 8 for QWORD)

e Example: list DWORD 1,2.3.4
listSize = ($ - list) / 4

Assembly Language 42

EQU Directive

e Define a symbol as either an integer or text expression

e =directive only permitted integers
e Cannot be redefined

e Example:

Pl EQU <3.1416>

presskKey EQU <"Press any key to continue...',0>
.data

prompt BYTE pressKey

Assembly Language 43

TEXTEQU Directive

Define a textual symbol as either an integer or text expression

Called a text macro

Can be redefined

% turns an integer into text

;macros
msg TEXTEQU <"Do you wish to continue (Y/N)?'>
rowSize = 5

count TEXTEQU %(rowSize * 2) ; eval & store as text
setupAL TEXTEQU <mov al,count> ; macro for a mov iInstr
.data

promptl BYTE msg
.code
setupAL ; Creates "mov al,10"

Assembly Language 44

Real-Address Programming

e Make your computer look, act, and feel like one built in the 80s
e Generate 16-bit MS-DOS Programs (Why?)

 "Advantages"

+ enables calling of MS-DOS and BIOS functions

¢ N0 memory access restrictions

e Disadvantages

+ must be aware of both segments and offsets

+ cannot call Win32 functions

Requirements
+ INCLUDE Irvinel6.inc

+ Initialize DS to the data segment:

mov ax,@data

mov ds,ax

Assembly Language

45

Outline

I'm so clever~! &

\

* Real-Address Mode Programming

Assembly Language 46

Summary

Integer expression, character constant
directive — interpreted by the assembler
instruction — executes at runtime

code, data, and stack segments

source, listing, object, map, executable files

Data definition directives:
+ BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD, REAL4, REAL8

+ TBYTE, REAL10 — Obscure and rarely used instructions (becoming
obsolete)

+ DUP operator, location counter (S)

Symbolic constants
+ =, EQU and TEXTEQU

Assembly Language 47

	Assembly Language��Lecture 3 – Assembly Fundamentals �
	Outcomes of Lecture 2
	Outline
	Outline
	Assemble-Link Execute Cycle
	Listing File
	Review Questions
	Outline
	Basic Elements
	Integer Constants
	Integer Expressions
	Characters and Strings
	Reserved Words and Identifiers
	Directives
	Directives: Defining Segments
	Intel Instructions
	Labels
	Instruction Formats
	NOP Instruction
	Review Questions
	Outline
	Program Template
	Example: Adding and Subtracting Integers
	Example Output
	Possible Coding Standards
	Example: Adding and Subtracting Integers�2nd version
	Outline
	Basic Data Types
	Legacy Data Directives
	Data Definition Statement
	Defining BYTE, SBYTE Data
	Defining Byte Arrays
	Defining Strings
	DUP Operator
	Defining Other Types
	Little Endian Order
	Example: Using Variables
	Segment Control
	Declaring Uninitialized Data
	Outline
	Integer Symbolic Constants
	Array Size
	EQU Directive
	TEXTEQU Directive
	Real-Address Programming
	Outline
	Summary

