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Outcomes of Lecture 2

e General Concepts

+ CPU Design, Instruction execution cycle

e |A-32 Processor Architecture

+ Modes of operations, CPU Registers & Flags, Intel CPU History

e JA-32 Memory Management
+ Real address mode, segmented memory, paging
e Input-Output System

+ Levels of input / output system
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Outline

e Assembling, Linking, and Running Programs

e Basic Elements of Assembly Language
e Example: Adding and Subtracting Integers

e Defining Data

I'm so clever~! &

\

e Symbolic Constants

o Real-Address Mode Programming
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Assemble-Link Execute Cycle

e The following diagram describes the steps from creating a source

program through executing the compiled program.

o [f the source code is modified, Steps 2 through 4 must be repeated.
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Listing File

Use it to see how your program is compiled
Named after the project, e.qg., project. Ist

Suitable for printing

e Contains:

2

2

2

2

2

o Example on pages 72-74 with detailed explanation — PLEASE READ!

source code

addresses

object code (machine language)
segment names

symbols (variables, procedures, and constants)
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Review Questions

* What types of files are produced by the assembler?

o (True/False): The linker extracts assembled procedures from the link library

and inserts them in the executable program.

» Which operating system component reads and executes programs?
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Basic Elements

e Integer constants and expressions

e Character and string constants
e Reserved words and identifiers
e Directives and instructions

e Labels

e Mnemonics and Operands

e Comments
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Integer Constants

[{+[-} digits [radix]
e Optional leading + or — sign

e Binary, decimal, hexadecimal
e Common radix characters:

¢+ h—hexadecimal Use as much as possible

¢ d —decimal When hex makes no sense
¢ b —binary For bitwise clarity

¢ r—encoded real Real

Examples: 30d, 6Ah, 42, 1101b
Hexadecimal can't begin with a letter: 0A5h
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Integer Expressions

e FEvaluated at assembly time

e Examples:

Operator Name Precedence Level

) parentheses I

+, - unary plus, minus 2

*,/ multiply, divide 3

MOD modulus 3

+, - add. subtract 4

Expression Value

16 / & 3
-3 + 4) * (6 - 1) -36
-2+ 4 *6 -1 20
25 mod 3 1

Assembly Language
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Characters and Strings

e Enclose character in single or double quotes
* IAI’ llel
+ ASCIl character = 1 byte

e Enclose strings in single or double quotes
* IIABCH
* leZl
+ Each character occupies a single byte

* Embedded quotes are allowed:

+ 'Say "Goodnight," Gracie'
¢ "This isn't a test"
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Reserved Words and Identifiers

e Reserved words cannot be used as identifiers

¢ Instruction mnemonics, directives, type attributes, operators,
predefined symbols

+ See MASM reference in Appendix A

o [dentifiers

¢ 1-247 characters, including digits

¢ not case sensitive

o first character must be a letter, , @, ?, or S

+ used for labels (procedure names, variables), constants
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Directives

e Instructions on how to assemble (not @ runtime)

e Commands that are recognized and acted upon by the
assembler
+ not part of the Intel instruction set

+ used to declare code, data areas, select memory model, declare

procedures, variables etc.

+ not case sensitive (.data, .DATA, and .Data)

e Different assemblers have different directives

+ GNU assembler, netwide assembler not the same as MASM
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Directives: Defining Segments

e One important function of assembler directives is to

define program sections, or segments
.data
.code

.stack 100h
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Intel Instructions

o Assembled into machine code by assembler

e Executed at runtime by the CPU
e An instruction contains:

+ Label (optional)

+ Mnemonic (required)

+ Operand(s) (depends on the instruction)
¢ Comment (optional) — begins with ';’

[1abel =] mnemonic [operands] [,;comment]

Joopl: mov eax, 32 scount of array elements
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Labels

o Act as place markers

+ marks the address (offset) of code and data

» Follow identifier rules

e Data label (Variable names)

+ must be unique

¢+ example: count DWORD 100 (not followed by colon)

e Code label

+ target of jump and loop instructions

¢ example: L1: (followed by colon)
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Instruction Formats

* No operands

+ stc ; set Carry fTlag

e One operand
« INC eax , register
+ INC myByte ; memory
e Two operands
+ add ebx,ecx , register, register
+ sub myByte,b25 , memory, constant

+ add eax,36 * 25 , reg, const-expr
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NOP Instruction

e No Operation

¢ The safest and most useless instruction

o Uses 1 byte of storage
e CPU: Reads it, Decodes it, Ignores it

e Usually used to align code to even-address boundaries
(multiple of 4):

00000000 66 8B C3 mov ax,bx

00000003 90 nop ; align next instruction
00000004 8B D1 mov edx,ecx

e x86 processors are designed to load code and data more

quickly from even doubleword addresses.
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Review Questions

(Yes/No): Is A5h a valid hexadecimal constant?

(Yes/No): Must string constants be enclosed in single quotes?

What is the maximum length of an identifier?

(True/False): Assembler directives execute at runtime.

Assembly Language 20



Outline

e Example: Adding and Subtracting Integers

e Defining Data
I'm so clever~ &

e Symbolic Constants

o Real-Address Mode Programming
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Program Template

TITLE Program Template (Template.asm)
.data

; (Insert variables here)
.code
main PROC
; (Insert executable i1nstructions here)
exit
main ENDP
; (Insert additional procedures here)
END main

Assembly Language
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Example: Adding and Subtracting Integers

TITLE Add and Subtract

; This program adds and subtracts 32-bit integers.

INCLUDE Irvine32.1nc
_code

main PROC
mov eax,10000h
add eax,40000h
sub eax,20000h
call DumpRegs
exit

main ENDP

END main

(AddSub.asm)

; EAX = 10000h
; EAX = 50000h
; EAX = 30000h

; display registers

Assembly Language
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Example Output

e Program output, showing registers and flags:

EAX=00030000 EBX=7FFDFOOO ECX=00000101 EDX=FFFFFFFF
ES1=00000000 EDI=00000000 EBP=0012FFFO ESP=0012FFC4
EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0
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Possible Coding Standards

e Capitalization
+ Capitalize reserved words, including mnemonics and register names
+ Capitalize nothing

+ Capitalize initial letters
o Use descriptive identifier names

e Indentation and spacing
+ code and data labels — no indentation
+ executable instructions —indent 4-5 spaces (1 tab)
+ comments: right side of page, aligned vertically
+ 1-3 spaces between instruction and its operands ( 1 tab)

+ 1-2 blank lines between procedures

Assembly Language 25



Example: Adding and Subtracting Integers

2"d yersion

TITLE Add and Subtract (AddSub2.asm)

; This program adds and subtracts 32-bit integers.
: Without i1nclude

. 386

-.model flat, stdcall

.Stack 4096

ExitProcess PROTO, dwExitCode.:DWORD

DumpRegs PROTO

.code
main PROC
mov eax,10000h ; EAX = 10000h
add eax,40000h ;. EAX = 50000h
sub eax,20000h ;. EAX = 30000h
call DumpRegs ; display registers
INVOKE ExitProcess, 0O
main ENDP

END main

Assembly Language
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Outline

e Defining Data
I'm so clever~ &

e Symbolic Constants

o Real-Address Mode Programming
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Basic Data Types

e BYTE, SBYTE: 8-bit unsigned & signed integers

o WORD, SWORD: 16-bit unsigned & signed integers
e DWORD, SDWORD: 32-bit unsigned & signed integers
e QWORD: 64-bit integer
+ Note: Not signed/unsigned
o TBYTE: 80-bit (ten byte) integer
e REAL4, REALS: 4-byte short & 8-byte long reals
e REAL10: 10-byte IEEE extended real

Assembly Language 28



Legacy Data Directives

I

DB 8-bit integer

DW 16-bit integer

DD 32-bit integer or real
DQ 64-bit integer or real
DT 80-bit (10 bytes) integer

supported also by the Netwide Assembl/er (NASM)
and 7urbo Assembler (TASM)
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Data Definition Statement

* A data definition statement sets aside storage in memory for a variable.
* May optionally assign a name (label) to the data
e Syntax:

[name] directive initializer [,initializer] . . .

\ L

valuel BYTE 10

o Use the ? Symbol for undefined variables

o Allinitializers become binary data in memory

+ 00110010b, 32h, and 50d all end up being having the same binary value
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Defining BYTE, SBYTE Data

e FEach of the following defines a single byte of storage:

valuel BYTE "A- ; Character constant
value2 BYTE O ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
value4 SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte
value6 BYTE ? ; uninitialized byte

e The optional name is a label marking the variable’s offset from the beginning

of its enclosing segment.

+ if valuel is located at offset 0000 in the data segment and consumes 1 byte of

storage, value2 is automatically located at offset 0001

e MASM allow you from initializing a BYTE with a negative value (poor style)

e If you declare a SBYTE variable, the Microsoft debugger will automatically

display its value in decimal with a leading sign.
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Defining Byte Arrays

e Examples that use multiple initializers:
listl BYTE 10,20,30,40

list2 BYTE 10,20,30,40

BYTE 50,60,70,80

BYTE 81,82,83,84
list3 BYTE ?,32,41h,00100010b
list4 BYTE OAh,20h, “A”,22h

e An array is simply a set of sequential memory locations

e The directive (BYTE) indicates the offset needed to get to

the next array element

e No length, no termination flag, no special properties

Assembly Language 32



Defining Strings

e Astring is implemented as a sequence of characters

+ For convenience, it is usually enclosed in quotation marks

¢ |tis usually null terminated

¢ Characters are bytes

+ Hex characters ODh (CR) and OAh (LF) are useful

e Examples:

strl
str2
str3
newLine
greet

menu

BYTE
BYTE
BYTE
BYTE
BYTE
BYTE
BYTE

"“"Enter your name: ",0

"ERROR!* ,0Dh,0Ah, "Halting program*,0Dh,0Ah,0O
“A"_"E"."1"."0","U"

ODh,0Ah,O

"A string iIn"

" two parts.',0

1. Create a new account',0dh,Oah,

"2. Open an existing account'",0dh,Oah,

3. Exit',0ah,0Oah,

"Choice> ",0

Assembly Language
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DUP Operator

e Use DUP to allocate space for data

e Syntax: repetitions DUP ( argument )

e repetitions and argument must be constants or constant

expressions

varl BYTE 20 DUP(O)
var2 BYTE 20 DUP(?)
var3 BYTE 4 DUP(''STACK™)
var4 BYTE 10,3 DUP(0),20

; 20 bytes, all equal to zero
; 20 bytes, uninitialized

; 20 bytes: "STACKSTACKSTACKSTACK™
. 5 bytes

Assembly Language
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Defining Other Types

vall WORD
val2 SWORD
word3 WORD

word4 DWORD
myList WORD
array WORD
val5  DWORD
val6 SDWORD
dwd7  SDWORD
qwd8  QWORD
rvall REAL4
rval2 REALS

65535 ; largest unsigned value

—32768 ; smallest signed value

? ; uninitialized, unsigned
""ABCD" ;, Four characters
1,2,3,4,5 ; array of words

5 DUP(?) ; uninitialized array

OFFFFOO000N , unsigned

—2147483648 ; signed

-2,-1,0,1,2 ; signed array
1234567812345678h

-2.1

3.2E-260

Assembly Language
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Little Endian Order

o All data types larger than a byte store their individual bytes in

reverse order. The least significant byte occurs at the first

(lowest) memory address.

e Example:

vall DWORD 12345678h 0000: 78

0001: 56

0002: 34

0003: 12

Assembly Language 36



Example: Using Variables

TITLE Add and Subtract, Version 3 (AddSub3.asm)
, This program adds and subtracts 32-bit unsigned

; Integers and stores the sum in a variable.

INCLUDE Irvine32.inc

_data

vall DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
finalval DWORD ?

.code

main PROC
mov eax,vall ; start with 10000h
add eax,val?2 ; add 40000h
sub eax,val3 ; Subtract 20000h
mov finalVal,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP

END main
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Segment Control

e .code

+ all that follows goes in the code segment

e .data

+ all that follows goes in the data segment

e .data?

¢ uninitialized data segment
¢ allocated at runtime to store data

+ no space needed in stored .exe (since no values to store)

o [f intermixed they are separated by the assembler
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Declaring Uninitialized Data

o Use the .data? directive to declare an uninitialized data segment

+ .DATA? directive reduces the size of a compiled program.

.data?

arrayl DWORD 5000 DUP (?)

e No space is allocated to arrayl until the program is loaded for

execution (.exe is 20KB smaller)

.data
array2 DWORD 5000 DUP (?)

e array2, even though empty, has 20KB saved in .exe to store its

non-existent values
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» Symbolic Constants

o Real-Address Mode Programming
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Integer Symbolic Constants

name = expression

+ expression is a 32-bit integer (expression or constant)

+ may be redefined (but not good form to do so!)

+ name is called a symbolic constant

+ Directives: No runtime impact, not part of .exe

e good programming style to use symbols
COUNT = 500

mov ax,COUNT
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Array Size

e Current location counter: S

¢ subtract address of list

+ difference is the number of bytes

. :
Example. list BYTE 10,20,30,40

listSize = ($ - list)
e Divide by element size if bigger than a byte (i.e., 2 for
WORD, 4 for DWORD, 8 for QWORD)

e Example: list DWORD 1,2.3.4
listSize = ($ - list) / 4
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EQU Directive

e Define a symbol as either an integer or text expression

e =directive only permitted integers
e Cannot be redefined

e Example:

Pl EQU <3.1416>

presskKey EQU <"Press any key to continue...',0>
.data

prompt BYTE pressKey
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TEXTEQU Directive

Define a textual symbol as either an integer or text expression

Called a text macro

Can be redefined

% turns an integer into text

;macros
msg TEXTEQU <"Do you wish to continue (Y/N)?'>
rowSize = 5

count TEXTEQU %(rowSize * 2) ; eval & store as text
setupAL TEXTEQU <mov al,count> ; macro for a mov iInstr
.data

promptl BYTE msg
.code
setupAL ; Creates "mov al,10"
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Real-Address Programming

e Make your computer look, act, and feel like one built in the 80s
e Generate 16-bit MS-DOS Programs (Why?)

 "Advantages"

+ enables calling of MS-DOS and BIOS functions

¢ N0 memory access restrictions

e Disadvantages

+ must be aware of both segments and offsets

+ cannot call Win32 functions

Requirements
+ INCLUDE Irvinel6.inc

+ Initialize DS to the data segment:

mov ax,@data

mov ds,ax

Assembly Language
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* Real-Address Mode Programming
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Summary

Integer expression, character constant
directive — interpreted by the assembler
instruction — executes at runtime

code, data, and stack segments

source, listing, object, map, executable files

Data definition directives:
+ BYTE, SBYTE, WORD, SWORD, DWORD, SDWORD, QWORD, REAL4, REAL8

+ TBYTE, REAL10 — Obscure and rarely used instructions (becoming
obsolete)

+ DUP operator, location counter (S)

Symbolic constants
+ =, EQU and TEXTEQU
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