
Assembly Language

Lecture 4 – Data Transfers, Addressing, and
Arithmetic

Ahmed Sallam

Slides based on original lecture slides by Dr. Mahmoud Elgayyar

Assembly Language 2

 Basic Elements of Assembly Language

 Example: Adding and Subtracting Integers

 Assembling, Linking, and Running Programs

 Defining Data

 Symbolic Constants

 Real-Address Mode Programming

Outcomes of Lecture 3

Assembly Language 3

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

Assembly Language 4

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

Assembly Language 5

 Immediate – a constant integer (8, 16, or 32 bits)

 value is encoded within the instruction

 Register – the name of a register

 Memory – reference to a location in memory

 memory address is encoded within the instruction, or a

register holds the address of a memory location

Operand Types

.data
var1 BYTE 10h
;Suppose var1 were located at offset 10400h
mov AL,var1  A0 00010400

 Assembly Language 6

Operand Notation

 Assembly Language 7

MOV Instruction
 Move from source to destination

 Syntax:
MOV destination, source

 Both operands must be the same size

 No more than one memory operand permitted

 CS, EIP, and IP cannot be the destination

 No immediate to segment registers moves

 Memory to Memory:

 .code

mov ax,var1

mov var2,ax

Assembly Language 8

 A direct memory operand is a named reference to storage in memory

 The named reference (label) is automatically dereferenced by the

assembler

Direct Memory Operands

.data
var1 BYTE 10h
.code
mov al,var1 ; AL = 10h
mov al,[var1] ; AL = 10h

alternate format – Use consistently
if you chose to use it

Use it only when an arithmetic
expression is involved

mov al, [var1 +5]

 Assembly Language 9

Mov Errors
.data

 bVal BYTE 100
 bVal2 BYTE ?
 wVal WORD 2
 dVal DWORD 5

.code

 mov al,wVal
 mov ax,bVal
 mov eax,bVal
 mov ds,45
 mov eip,dVal
 mov 25,bVal
 mov bVal2,bVal

; byte <- word
; word <- byte
; dword <- byte
;immediate value not permitted
;invalid destination (eip)
;invalid destination (25)
;move in mem not permitted

 Assembly Language 10

Zero Extension

mov bl,10001111b

movzx ax,bl ; zero-extension

 When you copy a smaller value into a larger destination, the MOVZX

instruction fills (extends) the upper half of the destination with zeros

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination0 0 0 0 0 0 0 0

0

The destination must be a register

 Assembly Language 11

Sign Extension

mov bl,10001111b

movsx ax,bl ; sign extension

 The MOVSX instruction fills the upper half of the destination with a

copy of the source operand's sign bit

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Source

Destination1 1 1 1 1 1 1 1

The destination must be a register

 Assembly Language 12

XCHG Instruction (swap)

.data

 var1 WORD 1000h
 var2 WORD 2000h

.code
 xchg ax,bx ; exchange 16-bit regs
 xchg ah,al ; exchange 8-bit regs
 xchg var1,bx ; exchange mem, reg
 xchg eax,ebx ; exchange 32-bit regs

 xchg var1,var2 ; error: two memory operands

 XCHG exchanges the values of two operands

 At least one operand must be a register

 No immediate operands are permitted

 Assembly Language 13

 LAHF: loads status flags into AH

 Copies the low byte of the EFLAGS register including Sign, Zero, and Carry flags.

 Save a copy of the flags in a variable for safekeeping

 SAHF: stores AH into status flags

 Copies AH into the low byte of the EFLAGS register

 Retrieve the value of flags stored earlier

LAHF and SAHF Instructions

.data
 saveflags BYTE ?
.code
 lahf ; load flags into AH
 mov saveflags,ah ; save them into a variable

.code
 mov ah, saveflags ; load save flags into AH
 sahf ; copy into flags register

 Assembly Language 14

Intel x86-16 bit flags

 Assembly Language 15

Intel x86 flags

Assembly Language 16

1. mov move, dest <- source

2. movzx move w. zero extend

3. movsx move w. sign extend

4. xchg swap a register with somewhere else

5. lahf, sahf loads/stores flag registers to/from AH

 Don't move memory variables

 Match sizes

So Far…

 Assembly Language 17

Direct-Offset Operands

.data

 arrayB BYTE 10h,20h,30h,40h

.code
 mov al,arrayB+1 ; AL = 20h
 mov al,[arrayB+1] ; alternative notation

1. Obtain address specified by label arrayB

2. Add 1 to address (to get second array element)

3. Dereference address to obtain value (20h)

 A constant offset is added to a data label to produce an effective

address (EA)
 that is de-referenced to get the value inside its memory location

 Assembly Language 18

Examples
.data

 arrayW WORD 1000h,2000h,3000h
 arrayD DWORD 1,2,3,4

.code
 mov ax,[arrayW+2]
 mov ax,[arrayW+4]
 mov ax, [arrayW+6]
 mov eax,[arrayD+4]

 mov eax,[arrayD-2]
 mov eax,[arrayD+20]

There is no "range checking" – the address is
calculated and used

; AX = 2000h
; AX = 3000h
; EAX = 00000002h

; AX = 3000h
; Possible Seg Fault!

 Assembly Language 19

Example 2
 Write a program that adds the following three bytes:

 .data

 myBytes BYTE 80h, 66h, 0A5h

 Solution:

 mov al, myBytes

 add al, [myBytes+1]

 add al,[myBytes+2]

 Assembly Language 20

Find the error . . .

 How about the following code. Is anything missing?

 .data

 myBytes BYTE 80h,66h,0A5h

 .code
 movzx ax,myBytes
 mov bl,[myBytes+1]
 add ax,bx
 mov bl,[myBytes+2]
 add ax,bx ; AX = sum

What is in bx when we do the add? We loaded bl, what was in bh?

Assembly Language 21

 What are the three basic types of operands?

 (True/False): The destination operand of a MOV instruction cannot be a segment

register.

 (True/False): In a MOV instruction, the second operand is known as the destination

operand.

 (True/False): The EIP register cannot be the destination operand of a MOV instruction.

 In the operand notation used by Intel, what does reg/mem32 indicate?

 In the operand notation used by Intel, what does imm16 indicate?

Review Questions

Assembly Language 22

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

Assembly Language 23

 Add 1 or subtract 1 from operand

 operand may be register or memory

 INC destination

 Logic: destination ← destination + 1

 (e.g., destination++)

 DEC destination

 Logic: destination ← destination – 1

 (e.g., destination--)

INC and DEC Instructions

Assembly Language 24

INC and DEC Examples
.data

 myWord WORD 1000h
 myDword DWORD 10000000h

.code
 inc myWord ; 1001h
 dec myWord ; 1000h
 inc myDword ; 10000001h

 mov ax,00FFh
 inc ax ; AX = 0100h
 mov ax,00FFh
 inc al ; AX = 0000h

 Assembly Language 25

ADD and SUB Instructions

 ADD destination, source

 Logic: destination ← destination + source

 SUB destination, source

 Logic: destination ← destination – source

 Same operand rules as for the MOV instruction

 Assembly Language 26

Examples
.data
 var1 DWORD 10000h
 var2 DWORD 20000h

.code
 mov eax,var1 ; 00010000h
 add eax,var2 ; 00030000h
 add ax,0FFFFh ; 0003FFFFh
 add eax,1 ; 00040000h
 sub ax,1 ; 0004FFFFh

 Lesson: You can make yourself really confused and your code becomes

garble if you keep using a register for different sized values (ax, al, eax, ah,

ax, …)

 Pay attention to detail and know exactly what is in every part of a register

 Assembly Language 27

NEG (negate) Instruction

.data
 valB BYTE -1
 valW WORD +32767

.code
 mov al,valB ; AL = -1
 neg al ; AL = +1
 neg valW ; valW = -32767

 Reverses the sign of an operand in a register or

memory location (2nd complement)

 Suppose AX contains –32,768 and we apply NEG to it.

Will the result be valid? Remember, the max positive

value is 32767 (Try it!!!)

 Assembly Language 28

Performing Arithmetic

.data
Rval DWORD ?
Xval DWORD 26
Yval DWORD 30
Zval DWORD 40

.code
 ;first term :-Xval
 mov eax,Xval
 neg eax ; EAX = -26
 ;second term :Yval – Zval
 mov ebx,Yval
 sub ebx,Zval ; EBX = -10
 ;add the terms and store the result
 add eax,ebx
 mov Rval,eax ; -36

 HLL compilers translate mathematical expressions into

assembly language. You have to do it manually. For example:
Rval = -Xval + (Yval – Zval)

Assembly Language 29

 The ALU has a number of status flags that reflect the

outcome of arithmetic (and bitwise) operations

 based on the contents of the destination operand after the operation

 Essential flags:

 Zero flag – set when destination equals zero

 Sign flag – set when destination is negative

 Carry flag – set when unsigned value is out of range

 Overflow flag – set when signed value is out of range.

 The MOV instruction never affects the flags.

Flags Affected by Arithmetic

 Assembly Language 30

Concept Map

status flags

ALU
conditional jumps

branching logic

arithmetic & bitwise
operations

 part of

used by

 provide
attached to

affect

CPU

executes

executes

 Assembly Language 31

Zero Flag (ZF)

mov cx,1
sub cx,1 ; CX = 0, ZF = 1
mov ax,0FFFFh
add ax,1 ; AX = 0, ZF = 1
add ax,1 ; AX = 1, ZF = 0

 The Zero flag is set when the result of an operation

produces zero in the destination operand

Remember...
• A flag is set when it equals 1
• A flag is clear when it equals 0

 Assembly Language 32

Sign Flag (SF)

mov cx,0
sub cx,1 ; CX = -1, SF = 1
add cx,2 ; CX = 1, SF = 0

 The Sign flag is set when the destination operand is negative

 The flag is clear when the destination is positive

 The sign flag is a copy of the destination's highest bit
 mov al,0
 sub al,1 ; AL = 11111111b, SF = 1
 add al,2 ; AL = 00000001b, SF = 0

 Assembly Language 33

Signs on Integers

 All CPU instructions operate exactly the same on signed

and unsigned integers

 The CPU cannot distinguish between signed and unsigned

integers

 YOU, the programmer, are solely responsible for using the

correct data type with each instruction

Assembly Language 34

 The Carry flag is concerned with the size error (unsigned

arithmetic)

Carry Flag (CF)

mov al,0FFh
add al,1 ; CF = 1, AL = 00

mov ax,0FFh
add ax,1 ; CF = 0, AX = 0100h

 Assembly Language 35

More Examples

mov ax,00FFh

add ax,1
sub ax,1
add al,1

mov bh,6Ch
add bh,95h

mov al,2
sub al,3

 For each of the following marked entries, show the values of the

destination operand and the Sign, Zero, and Carry flags:

; AX=0100h, SF=0 ZF=0 CF=0
; AX=00FFh, SF=0 ZF=0 CF=0
; AL=00h, SF=0 ZF=1 CF=1

; BH=01h, SF=0 ZF=0 CF=1

; AL=FFh, SF=1 ZF=0 CF=1

Assembly Language 36

 The Overflow flag is concerned with the sign error (signed

arithmetic).

Overflow Flag (OF)

 mov al,+127
 add al,1 ; OF = 1, AL = -128

 mov al,7Fh ; OF = 1, AL = 80h
 add al,1

 The two examples are identical at the binary level because

7Fh = +127

80h = -128

 To determine the value of the destination operand, it is often

easier to calculate in hexadecimal

Lesson: Work in one number system consistently (hex preferably)

Assembly Language 37

 When adding two integers, remember that the Overflow

flag is only set when . . .

 Two positive operands are added and their sum is negative

 Two negative operands are added and their sum is positive

The sign of the result is opposite the sign of the operands

Tricks

What will be the values of the Overflow flag?
 mov al,80h ; (-128) + (-110)
 add al,92h ; OF =

 mov al,-2
 add al,+127 ; OF =

1, al= 26

0

 Overflow never occurs when the signs of two addition operands are different.

Sub a, b  add a, -b

Assembly Language 38

 CF = (carry out of the MSB)

 OF = Carry out XOR Carry in MSB

A Rule of Thumb

Add example:

 mov al,01
 add al,255

 0000 0001
+1111 1111

 0000 0000

CarryIn=1
CarryOut=1

Then CF=1, OF=0

Sub Example:
 mov al, 1
 sub al, 128 ; al=1000 0001
In this example, the actual carry out= 0. However, the x86
processor invert this value and state the carry flag, then CF=1.
Meanwhile, the Carry in of MSB=1 in the result of this operation.
Thus:
if it's Carry flag xor MSB: then 1 xor 1 =0 (Wrong)
if it's Carry out xor Carry In of MSB: then 0 xor 1= 1 (Correct)

How it comes?
 0000 0001 0000 0001
-1000 0000 ->+0111 1111
 + 1

 1000 0001
CarryIn=1
CarryOut=0

Then CF=Inversion of CarryOut= 1
OF=CarryIn Xor Carryout=1

 0000 0001
+ 1000 0000

Assembly Language 39

Flags Special Cases

 INC and DEC instructions doesn’t affect the Carry flag.

 Applying the NEG instruction to a nonzero operand always sets

the Carry flag. (sub 0, operand)

 Assembly Language 40

Warning

 How does the CPU know whether an arithmetic operation is

signed or unsigned?

 We can only give what seems a dumb answer: It doesn’t!

 The CPU sets all status flags after an arithmetic operation

using a set of Boolean rules,

 regardless of which flags are relevant.

 You (the programmer) decide which flags to interpret and

which to ignore, based on your knowledge of the type of

operation performed.

Assembly Language 41

1. Implement the following expression in assembly language: AX = (-val2 + BX) - val4.

2. (Yes/No): Is it possible to set the Overflow flag if you add a positive integer to a

negative integer?

3. (Yes/No): Is it possible for the NEG instruction to set the Overflow flag?

4. (Yes/No): Is it possible for both the Sign and Zero flags to be set at the same time?

5. Write a sequence of two instructions that set both the Carry and Overflow flags at

the same time.

6. Write a sequence of instructions showing how the Zero flag

 could be used to indicate unsigned overflow (carry flag)

 after executing the INC instruction.

Review Questions

Assembly Language 42

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

 Assembly Language 43

Align Directive

.data

bVal BYTE ? ; 00404000

ALIGN 2

wVal WORD ? ; 00404002

bVal2 BYTE ? ; 00404004

ALIGN 4

dVal DWORD ? ; 00404008

dVal2 DWORD ? ; 0040400C

 The ALIGN directive aligns a variable on a byte, word,

doubleword, or paragraph boundary:

 Assembly Language 44

PTR Operator

.data
 myDouble DWORD 12345678h
.code

 mov ax,myDouble ;error! word<-dword

 mov ax,WORD PTR myDouble

 mov WORD PTR myDouble,4321h ;saves 4321h

 Overrides the default type of a label (variable).

 Provides the flexibility to access part of a variable

 Requires a prefixed size specifier

;loads 5678h

Assembly Language 45

 Little endian order refers to the way Intel stores integers in memory

 Multi-byte integers are stored in reverse order, with the least significant

byte stored at the lowest address

 For example, the DWORD 12345678h would be stored as:

Little Endian Order (again)

000078

56

34

12

0001

0002

0003

offsetbyte

When integers are loaded from memory

into registers, the bytes are automatically

re-reversed into their correct positions

 Assembly Language 46

PTR Operator Examples
.data
 myDouble DWORD 12345678h

12345678 00005678

1234

78

56

34

12

0001

0002

0003

offsetdoubleword word byte

myDouble

myDouble + 1

myDouble + 2

myDouble + 3

mov al,BYTE PTR myDouble

mov al,BYTE PTR [myDouble+1]

mov al,BYTE PTR [myDouble+2]

mov ax,WORD PTR myDouble

mov ax,WORD PTR [myDouble+2]

; AL = 78h

; AL = 56h

; AL = 34h

; AX = 5678h

; AX = 1234h

 Assembly Language 47

Joining Words

.data
 myBytes BYTE 12h,34h,56h,78h

.code

 mov ax,WORD PTR [myBytes] ; AX = 3412h

 mov ax,WORD PTR [myBytes+2] ; AX = 7856h

 mov eax,DWORD PTR myBytes ; EAX = 78563412h

 PTR can also be used to combine elements of a smaller data

type and move them into a larger operand

 The CPU will automatically reverse the bytes

 Assembly Language 48

More Examples
.data
 varB BYTE 65h,31h,02h,05h
 varW WORD 6543h,1202h
 varD DWORD 12345678h

.code

 mov ax,WORD PTR [varB+2]

 mov bl,BYTE PTR varD

 mov bl,BYTE PTR [varW+2]

 mov ax,WORD PTR [varD+2]

 mov eax,DWORD PTR varW

; ax=0502h

; bl=78h

; bl=02h

; ax=1234h

; eax=12026543h

Assembly Language 49

 The TYPE operator returns the size in bytes of a single element of a

data declaration

TYPE Operator

.data
 var1 BYTE ?
 var2 WORD ?
 var3 DWORD ?
 var4 QWORD ?

.code

 mov eax,TYPE var1 ; 1

 mov eax,TYPE var2 ; 2

 mov eax,TYPE var3 ; 4

 mov eax,TYPE var4 ; 8

 Assembly Language 50

LENGTHOF Operator

.data LENGTHOF
 byte1 BYTE 10,20,30 ; 3

 array1 WORD 30 DUP(?),0,0 ; 32

 array2 WORD 5 DUP(3 DUP(?)) ; 15

 array3 DWORD 1,2,3,4 ; 4

 digitStr BYTE "12345678",0 ; 9

.code
 mov ecx,LENGTHOF array1 ; 32

 The LENGTHOF operator counts the number of elements in a

single data declaration

 Assembly Language 51

SIZEOF Operator

.data SIZEOF

byte1 BYTE 10,20,30 ; 3

array1 WORD 30 DUP(?),0,0 ; 64

array2 WORD 5 DUP(3 DUP(?)) ; 30

array3 DWORD 1,2,3,4 ; 16

digitStr BYTE "12345678",0 ; 9

.code
 mov ecx,SIZEOF array1 ; 64

 The SIZEOF operator is equivalent to multiplying:

SIZEOF = LENGTHOF * TYPE

Assembly Language 52

 OFFSET: Distance from beginning of data segment (i.e., a

partial address)

 PTR: Changes the size of a value (i.e., a cast)

 TYPE: Size in bytes of a value

 LENGTHOF: Number of data elements

 SIZEOF: TYPE * LENGTHOF (i.e., total bytes used)

Summary

 Assembly Language 53

Spanning Multiple Lines

.data
array WORD 10,20,
 30,40,
 50,60

.code
 mov eax,LENGTHOF array ; eax=6

 mov ebx,SIZEOF array ; eax=12

 A data declaration spans multiple lines if each line (except the

last) ends with a comma

 The LENGTHOF and SIZEOF operators include all lines

belonging to the declaration

 Assembly Language 54

Contrast: Anonymous Data

.data
array WORD 10,20 ; array ends here
 WORD 30,40 ; anonymous data, array+4
 WORD 50,60 ; array+8

.code
 mov eax,LENGTHOF array ; 2

 mov ebx,SIZEOF array ; 4

 In the following example, array identifies only the first WORD

declaration, with 2 values, even though the name can be used

to access all 6 words

 SIZEOF/LENGTHOF are assembly directives, NOT runtime

instructions

Assembly Language 55

 Assigns an alternate label name and type to an existing

storage location

 LABEL does not allocate any storage of its own

 Avoids the need for the PTR operator

LABEL Directive

.data
 dwList LABEL DWORD
 wordList LABEL WORD
 byteList BYTE 00h,10h,00h,20h
.code
 mov eax,dwList ; 20001000h
 mov cx,wordList ; 1000h
 mov dl,intList ; 00h

dwList, wordList, intList are the same offset (address)

Assembly Language 56

1. (True/False): The PTR operator returns the 32-bit address of a variable.

2. (True/False): The TYPE operator returns a value of 4 for doubleword operands.

3. (True/False): The LENGTHOF operator returns the number of bytes in an operand.

4. (True/False): The SIZEOF operator returns the number of bytes in an operand.

Review Questions

Assembly Language 57

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

Assembly Language 58

 OFFSET returns the distance in bytes of a label from the beginning

of its enclosing segment

 Protected mode: 32 bits

 Real mode: 16 bits

OFFSET Operator

offset

myByte

data segment:

The Protected-Mode programs we write use only a
single data segment due to the flat memory model

 Assembly Language 59

OFFSET Examples

.data
 bVal BYTE ?
 wVal WORD ?
 dVal DWORD ?
 dVal2 DWORD ?

.code

 mov esi,OFFSET bVal ; ESI = 00404000

 mov esi,OFFSET wVal ; ESI = 00404001

 mov esi,OFFSET dVal ; ESI = 00404003

 mov esi,OFFSET dVal2 ; ESI = 00404007

 Assume that bVal were located at offset 00404000h:

 Assembly Language 60

Indirect Operands (Register as a pointer)

.data
 val1 BYTE 10h,20h,30h
.code
 mov esi,OFFSET val1 ; esi stores address of val1
 mov al,[esi] ; dereference ESI (AL = 10h)

 inc esi
 mov al,[esi] ; AL = 20h

 inc esi
 mov al,[esi] ; AL = 30h

 An indirect operand holds the address of a variable, usually an

array or string

 It can be de-referenced (just like a pointer) using [and]

 Works with OFFSET to produce the address to de-reference

NOTE: We tend to
use esi and edi to
store addresses

 Assembly Language 61

Relating to C/C++

// C++ version:

char array[1000];
char * p = array;

; Assembly language:

.data
 array BYTE 1000 DUP(?)
.code
 mov esi,OFFSET array

 Assembly Language 62

Using PTR

.data
 myCount WORD 0

.code
 mov esi,OFFSET myCount

 inc [esi] ; error: operand must have size
 inc WORD PTR [esi] ; ok

 add [esi],20 ; error:..
 add ax, [esi] ; ax or al specifies the size
 add WORD PTR [esi],20 ; ok

 Use PTR to clarify the size attribute of a memory operand

 When we have an address (offset) we don't know the size of the

values at that offset and must specify them explicitly

 Assembly Language 63

Array Sum Example

.data

 arrayW WORD 1000h,2000h,3000h

.code

 mov esi,OFFSET arrayW

 mov ax,[esi]

 add esi,2

 ;or add esi,TYPE arrayW ; good clarity

 add ax,[esi]

 add esi,2

 add ax,[esi] ; AX = sum of the array

 Indirect operands are ideal for traversing an array

 Note: the register in brackets must be incremented by a value that matches

the array TYPE (i.e., 2 for WORD, 4 for DWORD, 8 for QWORD)

 Assembly Language 64

Indirect operand (variable as a pointer)

.data
 arrayW WORD 1000h,2000h,3000h
 ptrW DWORD arrayW ; ptrW = offset of arrayW
 ; Alternative – same as above
 ;ptrW DWORD OFFSET arrayW

.code
 mov esi,ptrW

 mov ax,[esi] ; AX = 1000h

 Offsets are of size DWORD

 A variable of size DWORD can hold an offset

 i.e., you can declare a pointer variable that contains the offset

of another variable.

 Assembly Language 65

Indexed Operands

.data

 arrayW WORD 1000h,2000h,3000h

.code

 mov esi,0

 mov ax,[arrayW + esi] ; AX = 1000h

 mov ax,arrayW[esi] ; alternate format

 add esi,TYPE arrayW

 add ax,[arrayW + esi]

 An indexed operand adds an address and a register to generate

an effective address

 There are two notational forms:
 [label + reg]
 label[reg]

 Assembly Language 66

Index Scaling

.data
 arrayB BYTE 0,1,2,3,4,5
 arrayW WORD 0,1,2,3,4,5
 arrayD DWORD 0,1,2,3,4,5

.code

 mov esi,4

 mov al,arrayB[esi*TYPE arrayB] ; 04

 mov bx,arrayW[esi*TYPE arrayW] ; 0004

 mov edx,arrayD[esi*TYPE arrayD] ; 00000004

 You can scale an indirect or indexed operand to the offset of an

array element by multiplying the index by the array's TYPE:

Assembly Language 67

1. (True/False): The OFFSET operator always returns a 16-bit value.

2. (True/False): Any 32-bit general-purpose register can be used as an indirect operand.

3. (True/False): The BX register is usually reserved for addressing the stack.

4. (True/False): The following instruction is invalid: inc [esi]

5. (True/False): The following is an indexed operand: array[esi]

Review Questions

Assembly Language 68

 Data Transfer Instructions

 Operand types

 MOV, MOVZX, MOVSX instructions

 LAHF, SAHF instructions

 XCHG instruction

 Addition and Subtraction

 INC and DEC instructions

 ADD, SUB instructions

 NEG instruction

 Data-Related Operators and Directives

 Indirect Addressing

 Arrays and pointers

 JMP and LOOP instructions

Outline

 Assembly Language 69

JMP Instruction

Example

top:
 .
 .
 jmp top

 Jumps are the basis of most control flow

 HLL compilers turn loops, if statements, switches etc. into

some kind of jump

 JMP is an unconditional jump to a label that is usually within

the same procedure.

 Syntax: JMP target

 Logic: EIP ← target

A jump outside the current procedure must be to a special type of label called a

global label (which we will examine when we examine procedures)

 Assembly Language 70

LOOP Instruction
 The LOOP instruction creates a counted loop using ECX

 Syntax: LOOP target

 target should precede the instruction
 ECX must contain the iteration count

 Logic:
 ECX ← ECX – 1
 if ECX != 0, jump back to target, else go to next instruction

 mov ax,0
 mov ecx,5

L1:
 add ax,cx

 loop L1

This loop calculates the sum:
5 + 4 + 3 +2 + 1

 Assembly Language 71

Examples

 mov ax,6
 mov ecx,4 ;Loop 4 times
L1:
 inc ax ;Each iteration ax++ (7,8,9,10)
 loop L1

 mov ecx,0 ;ecx starts at 0! (an error)
X2:
 inc ax ;ax++ until ecx holds 0
 loop X2 ;ecx– (-1,-2,-3, . . .)

;ax = 4294967296 when you exit the loop

 Assembly Language 72

Nested Loops

 If you need to code a loop within a loop, you must save the outer loop counter's

ECX value

 In this example, the outer loop executes 100 times, and the inner loop 20 times

.data
 count DWORD ?
.code
 mov ecx,100 ; set outer loop count
L1:
 mov count,ecx ; save outer loop count
 mov ecx,20 ; set inner loop count
L2: .

.
 loop L2 ; repeat the inner loop

 mov ecx,count ; restore outer loop count
 loop L1 ; repeat the outer loop

 Assembly Language 73

Summing an Array

.data

 intarray WORD 100h,200h,300h,400h

.code

mov edi,OFFSET intarray ; address of intarray

mov ecx,LENGTHOF intarray ; loop counter

mov ax,0 ; zero the accumulator

L1:

add ax,[edi] ; add an integer

add edi,TYPE intarray ; point to next integer

 loop L1 ; repeat until ECX = 0

 Assembly Language 74

Copying a String
.data

 source BYTE "This is the source string",0

 target BYTE SIZEOF source DUP(0)

.code

 mov esi,0 ; index register

 mov ecx,SIZEOF source ; loop counter

L1:

 mov al,source[esi] ; get char from source

 mov target[esi],al ; store it in the target

 inc esi ; move to next character

 loop L1 ; repeat for entire string

Assembly Language 75

1. (True/False): A JMP instruction can only jump to a label inside the current procedure.

2. (True/False): The LOOP instruction first checks to see whether ECX is not equal to

zero; then LOOP decrements ECX and jumps to the destination label.

3. (Challenge): What will be the final value of EAX in this example?

 mov eax,0
 mov ecx,10 ; outer loop counter
L1:
 mov eax,3
 mov ecx,5 ; inner loop counter
L2:
 add eax,5
 loop L2 ; repeat inner loop
 loop L1 ; repeat outer loop
4. Revise the code from the preceding question so the
 outer loop counter is not erased when the inner loop starts.

Review Questions

Assembly Language 76

 Data Transfer
 MOV – data transfer from source to destination
 MOVSX, MOVZX, XCHG

 Operand types
 direct, direct-offset, indirect, indexed

 Arithmetic
 INC, DEC, ADD, SUB, NEG
 Sign, Carry, Zero, Overflow flags

 Operators
 OFFSET, PTR, TYPE, LENGTHOF, SIZEOF, TYPEDEF

 JMP and LOOP – branching instructions

Summary

	Assembly Language��Lecture 4 – Data Transfers, Addressing, and Arithmetic�
	Outcomes of Lecture 3
	Outline
	Outline
	Operand Types
	Operand Notation
	MOV Instruction
	Direct Memory Operands
	Mov Errors
	Zero Extension
	Sign Extension
	XCHG Instruction (swap)
	LAHF and SAHF Instructions
	Intel x86-16 bit flags
	Intel x86 flags
	So Far…
	Direct-Offset Operands
	Examples
	Example 2
	Find the error . . .
	Review Questions
	Outline
	INC and DEC Instructions
	INC and DEC Examples
	ADD and SUB Instructions
	Examples
	NEG (negate) Instruction
	Performing Arithmetic
	Flags Affected by Arithmetic
	Concept Map
	Zero Flag (ZF)
	Sign Flag (SF)
	Signs on Integers
	Carry Flag (CF)
	More Examples
	Overflow Flag (OF)
	Tricks
	A Rule of Thumb
	Flags Special Cases
	Warning
	Review Questions
	Outline
	Align Directive
	PTR Operator
	Little Endian Order (again)
	PTR Operator Examples
	Joining Words
	More Examples
	TYPE Operator
	LENGTHOF Operator
	SIZEOF Operator
	Summary
	Spanning Multiple Lines
	Contrast: Anonymous Data
	LABEL Directive
	Review Questions
	Outline
	OFFSET Operator
	OFFSET Examples
	Indirect Operands (Register as a pointer)
	Relating to C/C++
	Using PTR
	Array Sum Example
	Indirect operand (variable as a pointer)
	Indexed Operands
	Index Scaling
	Review Questions
	Outline
	JMP Instruction
	LOOP Instruction
	Examples
	Nested Loops
	Summing an Array
	Copying a String
	Review Questions
	Summary

