History ot Computing

Ahmed Sallam

11/28/2014

Outline

Blast from the past

Layered Perspective of Computing
Why Assembly?

Data Representation

0 Base 2, 8, 10, 16 Number systems
Boolean operations and algebra

11/28/2014

‘ Blast from the past

= Once upon a time

FYYYYY

=

Abacus

)) Slide rule
e
1y

<.9JI LA~ L A Ry ! it
W BRI |%’Hfﬁfﬁlﬁ]‘lﬁh1fﬁw il I i i |
[l |13 | |l|||||215|I|I|I| r?:lé I:I;II|I|I[I|J|E?I|I|I|I|III<|I|I|III§1II' =

ﬁ%'z;o;' BARAR <B0!s ;

(TR AL T '
: 5 |

.= ipeess p /\]':
S

11/28/2014

‘ Blast from the past <ot

= 17" Century (Gears/Machines)

Curta (1948)

Pascaline

11/28/2014

‘ Blast from the past <0t

= 20" Century (Electronic)

A and B are the inputs The relevant tnth ladie for This crcul s

$ represents the ougut zum and
C represants T culpet cavry

Vacuum Tube

11/28/2014 5

‘ Blast from the past cont>

= Memory ?!!

Punched Card

11/28/2014)

Blast from the past

Everything Is there now, let’'s start to code ?!!!

Intel Machine Language Assembly Language
A1 00000000 mov eax, A
F7 25 00000004 — mul B
03 05 00000008 add eax, C
E8 00500000 call WriteInt

C++ language

cout<<(A*B+C)

11/28/2014

Outline

Blast from the past
Why Assembly?
Layered Perspective of Computing

Data Representation
o Base 2, 8, 10, 16 Number systems

Boolean operations and algebra

11/28/2014

Outline

Blast from the past
Layered Perspective of Computing

Why Assembly?

Data Representation
o Base 2, 8, 10, 16 Number systems

Boolean operations and algebra

11/28/2014

Layered Architecture

o Computers are complicated

+ Layers - abstraction (Hiding the complexity of layers below)
» We also layer programming languages!
e Program execution:

+ Interpretation

+ Compilation (Translation)

+ Every CPU has a built-in interpreter for its own "instruction set"
(ISA, Instruction Set Architecture; the binary language it is

programmed in)

11/28/2014 10

‘ Machine Levels

Level 4

Level 3

Level 2

Level 1

High Level
Language

Instruction Set

Architecture (ISA)

Digital Logic

11/28/2014

11

C++ Concepts

e Programmer (with an editor)
* Produces a C Program

o C Compiler (translator)
e Produces assembly language

e Microsoft Assembler "MASM" (translator)
e Produces Intel Binary code (object file)

11/28/2014

e Intel x86 CPU (e.g., Intel Core i5)
e Executes (interprets) Intel Binary Instructions

12

‘ Java — Ditterent Concepts

* Programmer
e Produces a Java Program

e Java Compiler (translator)
e Produces Java Byte Code (class file)

e JVM (Java Virtual Machine - Interpreter)
e Runs the byte code to produce output

|

11/28/2014

13

The Key Concepts

1. A High-Level Language (C, C++, Fortran,
High Level

Language
Language

2. The Assembly Language (for a specific CPU) -

Instruction Set

Cobol) is compiled (translated) into Assembly

IS assembled into binary machine language

Architecture (ISA)

3. The binary machine language is interpreted by -
Digital Logic
one of the CPUs in the computer

4. The CPU (Intel, AMD, etc.) uses digital logic

circuits to do the interpretation and generate

the results

11/28/2014 14

Linking and LLoading

Assembling (running MASM) does not actually create
a program that can be executed ...

There are (at least) 4 basic steps that need to be
performed:

a

a
a
a

11/28/2014

Assembling — translate code into binary

Linking — join all the parts together and resolve names
Loading — move the program into memory

Execution — run the program

15

‘ Outline

m Blast from the past
n Layered Perspective of Computing
= Why Assembly?

= Data Representation
o Base 2, 8, 10, 16 Number systems

= Boolean operations and algebra

11/28/2014

16

Assembly Language

Designed for a specific family of CPUs (i.e., Intel x86)

Consists of a mnemonic (simplified command word)
followed by the needed data

o Example: mov eax, A

o Move into register eax the contents of the location called A

Generally each mnemonic (instruction) is equivalent to
a single binary CPU instruction

11/28/2014 17

CPU Instruction Set

Appendix B: (Intel 1A-32) we will not cover all
Varies for each CPU

Intel machines use an approach known as CISC
o CISC = Complex Instruction Set Computing
o Lots of powerful and complex (but slow) instructions

Opposite is RISC (Reduced) with only a few very
simple instructions that run fast

11/28/2014 18

Why Assembly

Communicate with hardware (drivers, embedded
systems)

Games, Graphics

Some thing High level programming can’t do
(context switch)

Better understanding of programming (reverse
engineering)

11/28/2014

19

‘ Outline

m Blast from the past
n Layered Perspective of Computing
n Why Assembly?
= Data Representation
o Base 2, 8, 10, 16 Number systems
= Boolean operations and algebra

11/28/2014

20

Data Representation

Computers work with binary data (sometimes
represented in octal — base 8, or hexadecimal — base
16)

You should know how to translate between these
formats — THERE ARE NO CALCULATORS ON AN
EXAM!

| expect you to be able to do simple operations in these
bases (you can mostly ignore octal)

11/28/2014 21

Binary Numbers (Base 2)

Digitsare 1 and O

o 1 =true, current flowing/a charge present

o 0 = false, no current flowing/no charge present
MSB — most significant bit

LSB — least significant bit

Bits numbered from LSB to MSB, starting from O

MSB LSB
1011001010011100
15 0

11/28/2014

22

‘Binary = Decimal
-“--““-“

2'=128 2%=64 2°=32 24=16 23= 20=1

= Simple! Don't memorize formulas from book (makes it harder)
= Learn the powers of 2:
o 1,2,4,8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096,...

= Then, just add up the appropriate powers
0 10110010=128+32+16+2 =178

= Real programmers use a calculator! We'll just have simple values
In exams so you don't need a calculator and practice the basics

11/28/2014 23

‘ Decimal = Binary

= Repeatedly divide the decimal integer by 2. Each remainder is a
binary digit in the translated value:

37/2 18 1
18/2 9 0
9/2 4 1
412 2 0
212 1 0 I
1/2 0 1
37 =100101

11/28/2014 24

Binary Addition

= Same as normal addition, from right to left
20+0=0
20 0+1=1,1+0=1
o 1+1=0withacarryofl

11/28/2014

25

Hexadecimal Numbers (Base 16)

= Binary values are represented in hexadecimal
= Notthathard: 0, 1, 2,3,4,5,6,7,8,9,A,B,C,D,E, F

YOU WILL NEED THIS! Programmers work frequently in Hex

I) T T

0000 0 1000 8
0001 1 1 1001 9 9
0010 2 2 1010 10 A
0011 3 3 1011 11 B
0100 4 4 1100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 1111 15 F

11/28/2014

‘ Binary = Hexadecimal

= Each hexadecimal digit corresponds to 4 binary bits.
aExample: 000101101010011110010100
aGroup binary into groups of 4 digits (starting from the RIGHT)

aTranslate the binary into decimal by adding the powers of 1,2,4,
and 8

oE.g.,,0100=4,1001=8+1=9,0110=4+2+1=7,1010=8+2
=10,0110=4+2=6,0001=1

oTranslate the decimal intohex: 1 6 107 94 = 16A794

1 6 A 7 9 4

11/28/2014 27

Hexadecimal =2 Decimal
Need to know the powers of 16: 1,16,256, 4096, ...
TOO HARD! Just use a calculator for this!

WHAT IS IMPORTANT is to know that, FROM the RIGHT, the
digits represent: 160, 161, 162, ...

ALSO REMEMBER: x0 =1 for all x

The rightmost digit in a binary, octal, decimal, or hexadecimal
number is the base to the power of O

11/28/2014

28

Integer Storage Sizes (Types)

Byte = 8 Bits

Word = 2 Bytes

Doubleword = 2 Words = 4 Bytes

Quaaword = 4 Words = 8 Bytes = 64 Bits = Max value for a 64 bit CPU

Unsigned byte 255 28-1
Unsigned word 65,535 216-1
Unsigned doubleword 4,294,967,295 ?

11/28/2014 29

Singed Integers

The highest bit indicates the sign. e
1 = negative, O = positive «

If the highest digit of a hexadecimal integeris > 7, the e
value Is negative.

Examples: 8A, C5, A2, 9D «

11/28/2014 30

hWO’ s Complement

o Negative numbers are stored in two's complement notation

o Represents the additive Inverse

+ If you add the number to its additive inverse, the sum Is zero.

Starting value: 00000001

11111110
+

00000001

mayale that 00000001 + 11111111 = 00000000
o Hexadecimal éxamples

+ 6A3D - 95C2 + 0001 -> 95C3
+ 21F0 -> DEOF + 0001 - DE10

11/28/2014

31

Singed Binary €-2>Decimal

o [fthe highest bit is a O, convert it directly as unsigned binary

o [fthe highest bit Is 1, the number is stored in two's complement, form

Its two’s complement a second time to get its positive equivalent:

Starting value: 11110000

Step 2: add 1 to value from step 1 00010000

o Converting signed decimal to binary:
1. Convert the absolute value into binary

2. If the original decimal is negative, form the two’s complement

11/28/2014 32

‘Max & Min Values

Unsigned byte 0to 255 0to (28-1)
Singed byte -128 to +127 -27to (27-1)

Unsigned word 0to 65,535 0 to (216-1)
Signed word -32,768 to +32,767 -215to (215-1)

11/28/2014 33

Character Storage

o Character sets (Variations of the same thing)
+ Standard ASCII (0 — 127)
+ Extended ASCII (0 — 255)
+ ANSI (0 — 255)
+ Unicode (0 - 65,535)
o Null-terminated String
+ Array of characters followed by a null byte

+ Null means zero/0

11/28/2014

34

hJsing the ASCII Table

o Back inside cover of book (Need to know

this) V
. . 0 1 2 3 4|56 7
* To find hexadecimal code of a character: 4 '\ o weel 0 @l® I'p
. . DC1

+ ASCII Code of a is 61 hexadecimal > 1 sHn| |1]AlQ @D

2 [sx|oc2| " 2/ B|R|b|r

o Character codes 0 to 31 > ASCI/ control 3 Ex 3§ # 3 C S ¢ s
» 4 |oT|DC4| $ |4 | DI T | d t

characters 5 [Ena Nak | % | 5 | E U | e | u
Code Description | 6 [ScHsn Ef‘ B|F|V|[f]|V
(Decimal) 7 |BEL |ETB 7. G W g w

BS | CAN

8 Backspace | © S LI L h .

9 |HT |[EM |) | § I A Y

9 Horizontal tab Al s | Foabzlilz
10 Line feed (move to next line) Bvrgesc) + | ¢ A [RS { |

C FF | Fs < B v B |

13 Carriage return (leftmost output DicR|os| - [=IM|]|Im 3
column) TR BEEE EN PR

27 Escape Fls ||/ 20| _ o/

11/28/2014 35

.Endianism

o [ntel CPUs are "Little Endian”

» For Words, Doublewords, and Quaawords (i.e., types with more than one

byte), Least Significant Bytes Come First

« Quadword (8 Bytes):
[T T 1] —
X+1 Bl
X+2 B2
X+3 B3
X+4 B4
X+5 B5
X+6 B6

X+7 B7

11/28/2014 36

‘ Outline

m Blast from the past
n Layered Perspective of Computing
n Why Assembly?
» Data Representation
a Base 2, 8, 10, 16 Number systems
= Boolean operations and algebra

11/28/2014

37

Digital Logic

CPUs are constructed from digital logic gates such as
NAND, OR, XOR, etc.

Implemented using transistors and various families of
silicon devices

Super complicated — Many millions of transistors on a
single CPU

Logic Is the
fundamental language of computing

11/28/2014 38

Boolean Algebra
o The fundamental model by which digital circuits are designed and, as a
consequence, in which CPUs operate

o Basic assembly language instructions thus perform Boolean operations (So

we need to know them)
e Based on symbolic logic, designed by George Boole

+ Boolean expressions created from: NOT, AND, OR

Expression Description
X NOT X
XAY XANDY
XvyY XORY
XvY (NOTX)ORY
X AY) NOT (X AND Y)
XA Y XAND(NOTY)
11/28/2014 39

NOT

» /nverts (reverses) a Boolean value

o Truth table for Boolean NOT operator:

—X

Digital gate diagram for NOT:

11/28/2014

40

AND

Truth table for Boolean AND operator:

Digital gate diagram for AND:

11/28/2014

41

OR

XvY

Truth table for Boolean OR operator:

Digital gate diagram for OR:

11/28/2014

42

Operator Precedence

1.

2.

Parentheses

NOT

AND

OR

Expression Order of Operations

XvY NOT, then OR
IXVvY) OR, then NOT
Xv(YAZ) AND, then OR

11/28/2014

43

Truth Tables

o You won't formally have to create these, but you should remember how to

trace out a complex logical operation

o Highly complex logical expressions are often a sign of poor program
structure and design!

+ Example: (YA S) v (X" =S)

X Y S YAS =8 | XAS (YAS)V (X ATS)
F F F F T F F
F T F F T F F) .
Two-input multiplexer
T F F F T T T
T T F F T T T S
F F T F F F F
F T T T F F T X
mux Z
T F T F F F F v
T T T T F F T

11/28/2014 44

Thoughts...

o Assembly language is how software Is constructed at the

Jowest levels

o Assembly language has a one-to-one relationship with

binary machine language

o Many programmers never see more than a HLL (e.qg.,

C++) inside and IDE (e.q., Visual Studio) but really, there

Isa LOT more going on

11/28/2014 45

And...

» Nobody uses octal anymore

o Hex Is nothing more than a useful way to manipulate

binary
» CPUs do 3 things — Assembly programming Is Just using
these concepts to do larger and more complicated tasks
+ Add (basic integer math)
+ Compare (Boolean algebra)

+ Move things around

11/28/2014 46

